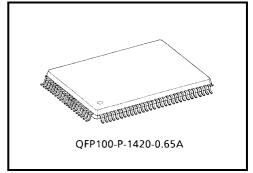
Toshiba CMOS Digital Integrated Circuit Silicon Monolithic


TC94A23F

Single-chip CD Processor with Built-in Controller

TC94A23F is a single-chip CD processor for digital servo. It incorporates a 4-bit microcontroller.

The controller features an LCD/LED driver, 4-channel 6-bit AD converter, 2/3-line serial interface, buzzer, interrupt function, and 8-bit timer/counter. The CPU can select one of three crystal oscillator operating clocks (16.9344 MHz, 4.5 MHz, and 75 kHz), facilitating interface with the CD processor.

The CD processor incorporates sync separation protection and interpolation, EFM decoder, error correction, digital equalizer for servo, and servo controller. The CD processor also incorporates a 1-bit DA converter. In combination with RF amp TA2153FN or TA2109F, TC94A23F can very simply configure an adjustment-free CD player.

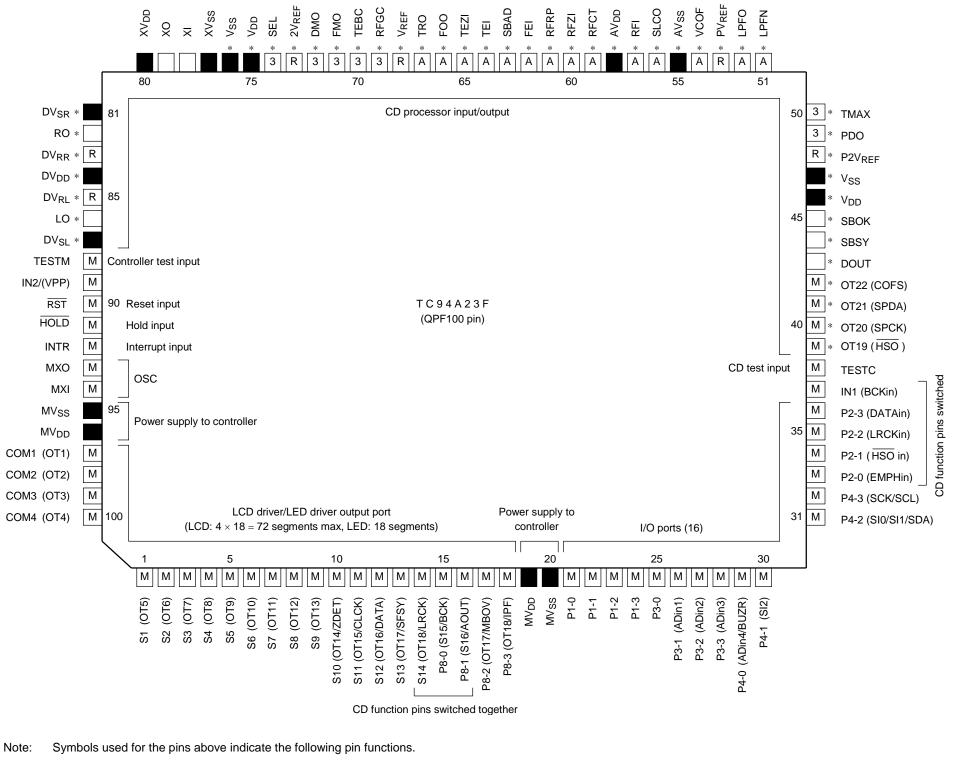
Weight: 1.6 g (typ.)

Thus, the IC is suitable for CD systems for automobiles and radio-cassette players.

Features

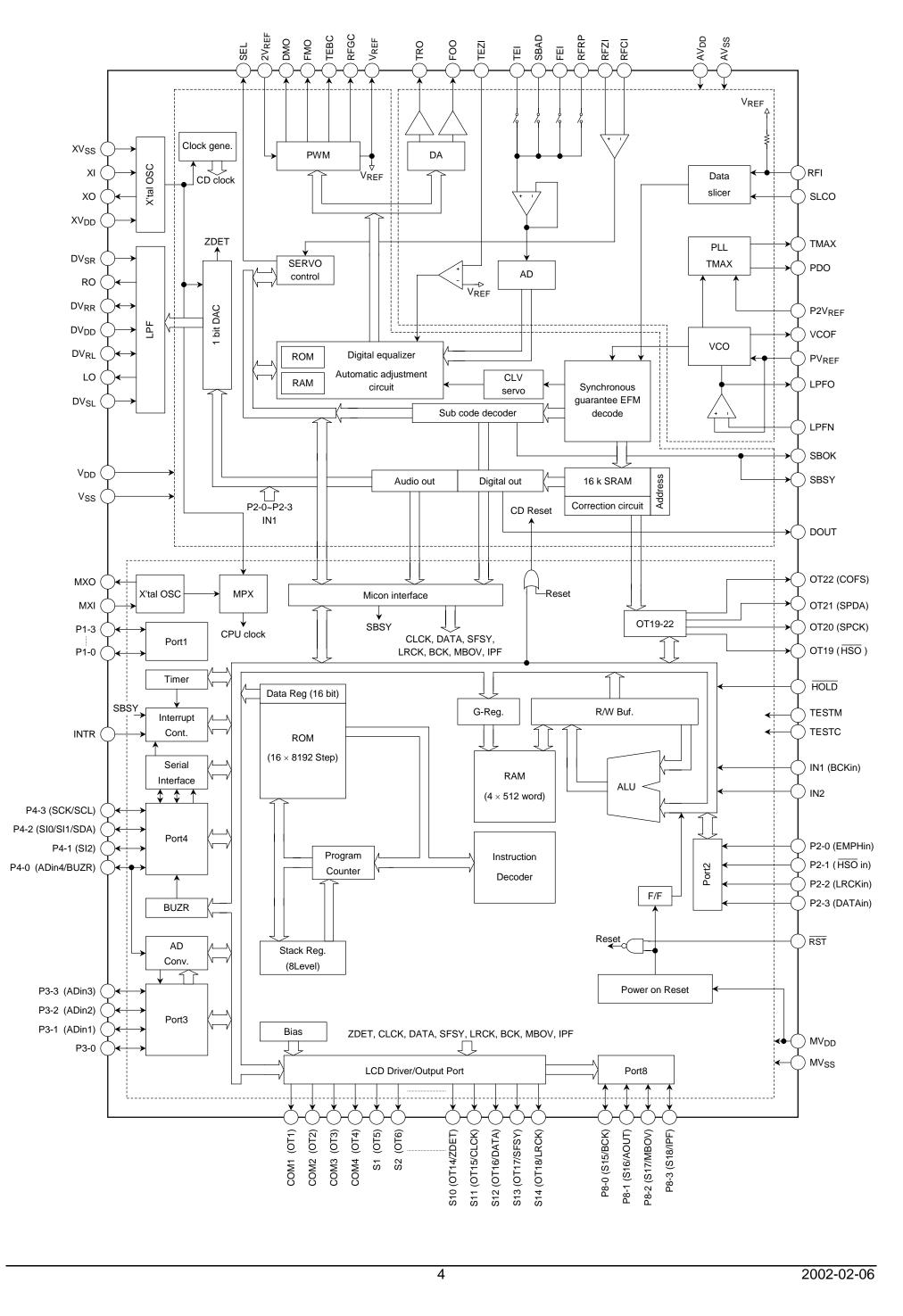
- Single-chip CD processor with built-in CMOS LCE/LED driver and 4-bit microcontroller
- Operating voltage: At CD on: VDD = 4.5 to 5.5 V (typ. 5.0 V) At CD off: VDD = 3.0 to 5.5 V (only CPU on)
 Current dissipation: At CD on: IDD = 50 mA (typ.) At CD off: IDD = 2 mA (with 4.5 MHz crystal oscillator, only CPU on) At CD off: IDD = 0.3 mA (with 75 kHz crystal oscillator, only CPU on)
 Operating temperature range: Ta = -40~85°C
 Package: QFP100-P-1420-0.65A (0.65-mm pitch, 2.7-mm thick)
 One-time PROM version: TC94AP09F

TOSHIBA


4-bit Microcontroller

- Program memory (ROM): 16-bit × 8k-step
- Data memory (RAM): 4-bit × 512-word
- Instruction execution time: 1.89/1.78/40 μs (all one-word instructions)
- Crystal oscillator frequency: 16.9344 MHz/4.5 MHz/75 kHz
- Stack level: 8
- AD converter: 6-bit × 4-channel
- LCD driver: 1/4 duty, 1/2 or 1/3 bias method, 72 segments max
- LED driver: 4-digit × 14-segment (max), also used as LCD driver switched by software
- I/O port: CMOS I/O port: 16
 - N-channel open drain I/O port: 4 (max)
 - Output-only port: 4 (max), also used as CD processor pins
 - Input-only port: 4
- Timer/counter: 8 bit (INTR, instruction cycle, 100/1 kHz selectable as timer clock)
 - 10, 100, or 500 Hz: internal port
 - 2 Hz: Flip-flop port
 - Serial interface: Supports 2/3-line method (data length: 4 or 8 bits)
- Buzzer: Four types: 0.75, 1, 1.5, and 3 kHz
 - Four modes: Continuous, Single-Shot, 10 Hz Intermittent, and 10 Hz Intermittent at 1 Hz Interval)
- Interrupt: 1 external, 3 internal (CD sub-sync, serial interface, 8-bit timer)
- Back-up mode: three types
 - Clock Stop (crystal oscillator off)
 - Hardware Wait (crystal oscillator on but CPU in operation)
 - Software Wait (CPU in intermittent operation)
- Reset function: Power-on reset, built-in supply voltage detector (detection voltage = 2.5 V typ.)

CD Processor


- Reliable sync pattern detection, sync signal protection and interpolation
- Built-in EFM decoder and sub code decoder
- High-correction capability using cross interleave read Solomon code (CIRC) logical equation C1 correction: dual
 - C2 correction: quadruple
- Supports variable speeds.
- Jitter absorption capability of ±6 frames
- Built-in 16 KB RAM
- Built-in digital output circuit
- Built-in L/R independent digital attenuators
- Bilingual audio output (Note)
- Sub code Q data are read-timing free and can be output in sync with audio data. (Note)
- Built-in data slice and analog PLL (adjustment-free VCO used) circuit
- Auto adjustment of loop gain, offset, and balance at focus servo and tracking servo
- RF gain auto adjustment circuit
- Built-in digital equalizer for phase compensation
- Supports different pickups using built-in digital equalizer coefficient RAM.
- Built-in focus and tracking servo control circuit
- Search control supports all modes and realizes high-speed, stable search.
- Lens kick and feed kick use speed control method.
- Built-in AFC circuit and APC circuit for disc motor CLV servo.
- Built-in defect/shock detector
- Built-in 8 times oversampling digital filter and 1-bit DA converter.
- Note: Output pins for sub code Q data and audio data are also used as LCD driver pins. The function of the pins can be switched by program.

Pin Connections

- * : CD processor-dedicated pin
- : Power supply pin
- 3 : CD processor tri-state output pin
- A : CD processor analog input/output pin
- R : Reference input pin
- M : Controller-dedicated pin
- Note: When the CD is off, the power supply pins for the controller (MV_{DD}) and the power pins supply for the CD oscillator (XV_{DD}) are on and the CD processor-dedicated power supply pins (indicated by asterisk *) are off.

Block Diagram

Pin Function

Pin Number	Symbol	Pin Name	Function and Operation	Remarks
97	COM1/OT1	LCD common output /output port	Common signal output pins for the LCD panel. Those pins configure matrix with S1 to S18 and display up to 72 segments. The LCD can be driven by the 1/2 or 1/3 bias	
98	COM2/OT2		method. When the 1/2 bias method is set, three levels, MV_{DD} , $1/2MV_{DD}$, and GND, are output at 2-ms intervals at a 62.5 Hz cycle. When the 1/3 bias method is set, four levels, MV_{DD} , $1/3MV_{DD}$, $2/3MV_{DD}$, and GND, are output at 1-ms intervals at a 125 Hz cycle	MV _{DD} MV _{DD} H H Bias voltage
99	COM3/OT3		(when either the 4.5 MHz or 75 kHz crystal oscillator is used). After system reset or clock stop execution is released, the non-selected waveform (bias voltage) is output. The DISP OFF bit is set to	
100	100 COM4/OT4		0 and the common signal is output. These pins can be switched to an output port (Note 1) or LED driver pins by program. They are usually used for digit output to drive the LEDs.	

Pin Number	Symbol	Pin Name	Function and Operation	Remarks
			Segment signal output pins for the LCD panel.	
			Those pins configure a matrix with COM1 to COM4 and display up to 72 segments.	
1~9	S1/OT4 ~ S9/OT13	LCD segment output /output port	When the 1/2 bias method is set, two levels, MV_{DD} and GND, are output. When the 1/3 bias method is set four levels, MV_{DD} , 1/3 MV_{DD} , 2/3 MV_{DD} , and GND, are output.	Bias voltage
			The S1 to S14 pins can be switched to an output port (Note 1) by program. Port 8 and S15 to S18 pins can be switched pin by pin to an I/O port and segment output pins. When	h h
10	S10/OT14 /ZDET		the pins are set to an I/O port, output is N-channel open drain.	
			The S10 to S14 and P8-0 to P8-3 pins can be switched to CD signal input/output pins by	
11	S11/OT15 /CLCK		program. Setting the CD10 bit to 1 switches the pins to the LRCK, BCK, and AOUT pins as the CD pins in batches. The other pins can be individually switched according to the S14/S15/S16 segment data.	
12	S12/OT16 /DATA	LCD segment output /output port /CD signal	CLCK: Inputs/outputs sub code P to W data reading clock.	
	/DATA		DATA: Outputs sub code P to W data.	
13	S13/OT17	7	SFSY: Outputs frame sync signal for playback.	
	/SFSY		LRCK: Outputs channel clock (44.1 kHz). When L channel, outputs Low. When R channel, outputs High. The polarity can be inverted by command.	
14	S14/OT18 /LRCK		BCK: Outputs bit clock (1.4112 MHz).	
	/LIXOR		AOUT: Outputs audio data.	MV _{DD}
15	P8-0/S15 /BCK		MBOV: Outputs buffer-memory-overflow signal. When buffer memory overflows, outputs H.	Input instruction Bias
16	P8-1/S16 /AOUT		IPF: Outputs interpolation pointing flag. If AOUT output is C2 error detection/correction, outputs High to indicate correction is impossible.	Voltage
		I/O port	ZDET: Outputs 1-bit DAC zero detection flag.	
17	P8-2/S17 /MBOV	/LCD segment output /CD signal	Pins set as an output port are used for segment output for the LED driver. The output port can increment OT1 to OT18 by instruction, facilitating access to data in external RAM and ROM.	
18	P8-3/S18 /IPF		(Note 1) After a system reset, pins also used as output ports are set to LCD output; pins also used as I/O ports are set to I/O port input.	

Pin Number	Symbol	Pin Name	Function and Operation	Remarks
21~24	P1-0~P1-3	I/O port 1	4-bit CMOS I/O port. Input/output can be set for each bit by program. The pins can be set to be pulled-up or pulled-down by program. Thus, they can be used as key input pins. When the pins are set to I/O port input, Clock Stop mode and Wait mode can be released, according to the change in input to the pins.	
25	P3-0	I/O port 3	5-bit CMOS I/O port. Input/output can be set for each bit by program. P3-1 and P4-0 pins are also used as built-in 6-bit 4-channel A/D converter analog input pins. The built-in A/D converter uses successive approximation. The conversion time is 6	MV _{DD} ◄F
26~28	P3-1/ADin1 ~ P3-3/ADin3	I/O port 3 /A/D analog voltage input	instruction cycles (280 μ s) when the 75 kHz crystal oscillator is used; 198 μ s when the 4.5 MHz crystal oscillator is used; 180 μ s when the 16.9344 MHz crystal oscillator is used. A/D analog input can be set for each pin by program. The internal power supply (MV _{DD}) is used as the reference voltage. The P4-0 pin is also used as the buzzer	To A/D converter
29	P4-0/ADin4 /BUZR	I/O port 4 /A/D analog voltage input/buzzer output	output pin. One of four frequencies: 0.75, 1, 1.5, and 3 kHz, can be selected for buzzer output. The buzzer is output at the selected frequency in one of four modes: Continuous, single-shot, 10 Hz intermittent, and 10 Hz intermittent at 1 Hz interval. Settings for the A/D converter and buzzer, and their control can be performed by program.	instruction
33 34 35 36	P2-0/EMPHin P2-1/HSO in P2-2/LRCKin P2-3/DATAin	I/O port 2 /1-bit DAC input	I/O port 2 is a 4-bit CMOS I/O port. IN1 and IN2 are a 2-bit general-purpose input port. Input/output can be set for each bit of I/O port 2 by program.	
37	IN1/BCKin IN2/ (VPP)	General-purpose input port/1-bit DAC input (VPP input)	I/O port 2 and the IN1 pins can be switched to 1-bit DAC input pins by the CD command to support shock-proofing. In this case, the I/O port must be set to input. With the OTP version, the IN2 pin is also used as the program power supply pin.	

Pin Number	Symbol	Pin Name	Function and Operation	Remarks
30	P4-1/S12	I/O port 4/serial data input	3-bit CMOS I/O port. Input/output can be set for each bit by program. These pins are also used as serial interface (SIO) circuit input/output pins.	
31	P4-2 /SI0/SI1/SDA	/serial data input/output	SIO is a serial interface supporting 2-line and 3-line methods. Starting from the MSB or LSB, 4 or 8-bit serial data are output to the SO/SDA pin, or data on the SI1 and SI2 pins are input to the device at the clock edge on the SCK/SCL pin. As the serial operating clock (SCK/SCL), an internal (450/225/150/75 kHz) or external clock can be selected. Rising or falling shift can also be selected. The clock and data output can be N-channel open drain. These selections facilitate controlling the LSI and communications between the controllers.	
32	P4-3 /SCK/SCL	/serial clock input/output	 When SIO interrupts are enabled, an interrupt is generated as soon as execution of the SIO completes, and the program jumps to address 4. This is effective for performing serial communications at high speed. All SIO inputs incorporate a Schmidt circuit. SIO and its control can be set by program. 	Input instruction + SI0 _{ON}
38	TESTC	Test mode control input	Input pins for controlling Test mode. When the pins are at High level, the device is in Test mode; at Low level, in normal operation.	
88	TESTM		Normally, set the pins to Low level or NC (pull-down resistors are incorporated).	
39~42	OT19/HSO OT20/SPCK OT21/SPDA OT22/COFS	Output port/CD control signal output	 4-bit general-purpose output port. After system reset, the pins are set to a Low-level output port. The pins can be switched to CD control output pins by program. Setting OT19 to OT22 to 0 switches all four pins to CD control output pins. Setting OT19 to OT22 and CDIO to 1 enables the pins to be switched as follows according to the segment data contents of the S15 and S16 pins: HSO : Outputs playback speed mode. Normal speed: High Double speed: Low SPCK: Outputs clock for reading processor status signal (176.4 kHz). APCK: Outputs processor status signal. SPDA: Outputs frame clock for correction (7.35 kHz). 	MVDD MVDD MVDD

Pin Number	Symbol	Pin Name	Function and Operation	Remarks			
43	DOUT		Digital output in.	+ V _{DD}			
			Sub code block sync output pin.	i h			
44	SBSY		When sub code sync is detected, outputs High at the S1 position.				
45	SBOK		Sub code Q data CRCC result output pin.				
			When the result is OK, outputs High.				
46, 75	V _{DD}		Power supply pins for CD digital block. Normally, 5 V is applied. When CD is not used (CD off), the power supply can be set to off except to the controller, enabling only the controller to				
47, 76	V _{SS}		controller, enabling only the controller to operate. At this time, 1 must be set in the CDoff bit. If pins from 11 to 18 and 39 to 42 are set as CD control signal input/output pins, setting the CDoff bit to 1 switches all the pins to an output port.	MV _{SS}			
48	P2V _{REF}		2V _{REF} pin for PLL block	—			
49	PDO	CD processor control input/output	Outputs phase error signal between the EFM and PLCK signals.	P2V _{REF}			
50	ТМАХ		TMAX detection result output pin. Selected by command bit TMPS. Longer than the specified cycle: Outputs $P2V_{REF}$. Shorter than the specified cycle: Outputs Low level (V _{SS}). Within the specified cycle: at high impedance	P2V _{REF}			
51	LPFN		Inverted input pin for low-pass filter amp.	AV _{DD}			
52	LPFO		Output pin for low-pass filter amp.				
53	PV _{REF}		V _{REF} pin for PLL block				
54	VCOF		VCO filter pin				
55	AV _{SS}		Ground pin for analog block				

Pin Number	Symbol	Pin Name	Function and Operation	Remarks
56	SLCO		DAC output pin for generating data slice level	RFI AVDD
57	RFI		RF signal input pin	SLCO DAC
58	AV _{DD}		Power supply pin for analog block	_
59	RFCT		RFRP signal center level input pin	RFZI
60	RFZI		RFRP zero-cross signal input pin	$RFCT \underbrace{\qquad}_{1 \text{ k}\Omega \text{ typ. } 32 \text{ k}\Omega \text{ typ.}}^{1 \text{ k}\Omega \text{ typ. } 32 \text{ k}\Omega \text{ typ.}}$
61	RFRP		RF ripple signal input pin	
62	FEI	CD processor control input/output	Focus error signal input pin	
63	SBAD		Sub beam addition signal input pin	SBAD
64	TEI		Tracking error input pin. The pin is read at tracking servo on.	
65	TEZI		Tracking error/zero-cross signal input pin	TEZI AV_{DD} Z_{in2} V_{REF} $I k\Omega typ. 32 k\Omega typ.$
66	FOO		Focus equalizer output pin	AV _{DD} 2V _{REF} ~ NW + AV _{SS}
67	TRO		Tracking equalizer output pin	
68	V _{REF}		Analog reference voltage power supply pin	—

Pin Number	Symbol	Pin Name	Function and Operation	Remarks
69	RFGC	a C (F T C	Control signal output pin for adjusting RF amplitude. Outputs three-level PWM signal (PWM carrier = 88.2 kHz).	P2V _{REF}
70	TEBC		Tracking balance control signal output pin. Outputs three-level PWM signal (PWM carrier = 88.2 kHz).	Rout3
71	FMO		Focus equalizer output pin. Outputs three-level PWM signal (PWM carrier = 88.2 kHz).	
72	DMO	CD processor control input/output	Disc equalizer output pin. Outputs three-level PWM signal (PWM carrier = 88.2 kHz for DSP block).	
73	2V _{REF}		Analog reference voltage power supply pin $(2 \times V_{REF})$	—
74	SEL		APC circuit on/off signal output pin. At laser on, high impedance at UHS = High; H level output at UHS = High.	
77	XV _{SS}		Power supply pins for CD crystal oscillator. To control the CD processor power supply and the controller power supply individually,	_
80	XV _{DD}		connect the MV_{DD} and MV_{SS} pins to the power supply lines used by the V_{DD} and V_{SS} pins.	
78	XI	CD processor crystal oscillator pins	CD crystal oscillator input/output pins. Connect a 16.9344 MHz crystal oscillator. The clock is used as the CD system clock and controller system clock. After system reset, this clock is supplied as the controller system clock and starts the CPU. The crystal oscillator can be halted by program. If the 4.5 MHz or 75 kHz oscillator is	XO R _{fxT1}
79	хо		selected as the controller system clock, the oscillator is halted by program when the CD processor is off. During execution of the CKSTP instruction, oscillation halts. (Note) When switching the controller system clock from the controller oscillator to the CD crystal oscillator, make sure that the CD crystal oscillator is in stable state.	XV _{DD} XI <i>m</i> XV _{SS}

Pin Number	Symbol	Pin Name	Function and Operation	Remarks
81	DV _{SR}		R-channel D/A converter block ground pin	DV _{DD}
82	RO		R-channel data forward rotation output pin	DV _{RR} /DV _{RL}
83	DV _{RR}		R-channel reference voltage pin	
84	DV _{DD}	CD processor control input/output	D/A converter block power supply pin	
85	DV _{RL}		L-channel reference voltage pin	RO/LO
86	LO		L-channel data forward rotation output pin	
87	DV_SL		L-channel D/A converter block ground pin	m Vss
90	RST	Reset input	Device system reset signal input pin. While the \overrightarrow{RST} is at Low level, reset is applied. When the RST is at High level, the CD block is in operation, and the controller program starts from address 0. Normally, when 2.7 V or higher voltage is supplied to the MV _{DD} when at 0 V, system	
			to High level. Input pin used to request or release hold state. Normally, the pin is used for inputting the CD mode selection signal or battery detection signal. Halt states are Clock Stop mode (crystal oscillator stops oscillation) and Wait mode (CPU stops). The modes are entered using the CKSTP and WAIT instructions. By program, Clock Stop mode can be entered by detection of Low level on the HOLD pin or by forced execution. Clock Stop mode can be	
91	HOLD	HOLD Hold mode control input	released by detection of High level on the HOLD pin or change in the HOLD pin input. Executing the CKSTP instruction stops the clock generator and the CPU, entering memory backup state. During memory backup state, current dissipation becomes low (1 μA or below). The display output and CMOS output port automatically become Low level. The N-channel open drain output becomes off. Regardless of the HOLD pin input state, Wait mode is executed and current dissipation becomes low. Crystal oscillator only on or CPU operation suspended can be programmed. When the crystal oscillator only is on, all displays are at Low level. The other pins are in Hold state. When CPU operation is suspended, all states are held except that the CPU is suspended. Wait mode is released by a change of the HOLD pin input. (Note) To use Backup mode, turn off the V _{DD} pin (power supply for CD), and enter Backup mode.	MV _{DD}

Pin Number	Symbol	Pin Name	Function and Operation	Remarks
92	INTR	External interrupt input	External interrupt input pin. When interrupts are enabled and a pulse of 1.11 to 3.33 µs or more (13.3 to 40 µs when the 75 kHz clock is used) is input to this pin, an interrupt is generated and the program jumps to address 1. Input logic and rising/falling edge can be individually selected for interrupt inputs. The internal 8-bit timer clock can be selected for interrupt inputs. Interrupts can be generated (address 3) by pulse count or the count value. Interrupt inputs are Schmidt inputs. The pin can be used as an input port for inputs such as remote control signals.	0
93	MXO	Crystal oscillator pins for controller	Crystal oscillator pins for the controller. The oscillator clock is used as a time base for the clock function as well as the system clock for the controller. After system reset, the CPU starts operation using the 16.9344 MHz CD oscillator (connected to the XI and XO pins). The oscillator is switched to the controller oscillator by program. Either a 4.5 MHz reference oscillator or a 75 kHz oscillator is connected to the MXO and MXI pins. The oscillators are switched by a bit used to select a frequency of 4.5 MHz or 75 kHz. The oscillators incorporate a feedback resistor. Switching frequencies automatically switches the feedback resistor of the crystal oscillator. 75 kHz: Rout2 = 2 K Ω , RfXT2 = 10 M Ω typ. 4.5 MHz: Rout2 = 2 K Ω , RfXT2 = 1 M Ω typ. If the operating clock is the CD crystal oscillator, fix the MXI pin to GND. During execution of the CKSTP instruction, oscillation halts. Selection and control of crystal oscillators are	MXO MXI MXI MXI MXI MXI MXI MXI MXI
19, 96	MV _{DD}	Power supply pins for	done by program. (Note) When the 75 kHz crystal oscillator is used, externally add/connect a 100 k Ω output resistor. Power supply pins for the controller block. Normally, V _{DD} = 4.5 to 5.5 V. In backup state (when executing the CKSTP instruction), current dissipation becomes low (1 μ A or below), dropping the power supply voltage to 2.0 V. If 2.7 V or more is applied to these pins when at 0 V, a system reset is applied to the device and the program starts from address 0 (power-on reset).	MVDD
20, 95	MVSS	controller block	 The CD processor incorporates a power supply detector, which detects the power supply voltage of 2.5 V. (Note) At power-on reset operation, allow 10 to 100 ms while the device power supply voltage rises. When not using the power supply detector function, set the test port pins (TEST#0 to 3) to all 1s so that the CD processor enters Halt state. Setting to Halt state reduces current dissipation by 150 µA (typ.). 	MV _{SS}

Maximum Ratings (Ta = 25°C, $V_{DD} = MV_{DD} = DV_{DD} = AV_{DD}$, $MV_{DD} = XV_{DD}$)

Characteristic		Symbol	Rating	Unit
Power supply volta	Power supply voltage		–0.3~6.0 (MV _{DD} ≧ V _{DD})	V
			$-0.3 \sim 0.0 (101 \text{ MJ}) \geq 0.0 \text{ (101 V})$	v
Input voltage	(V _{DD} power supply pin)	V _{IN1}	$-0.3 \sim V_{DD} + 0.3$	V
input voltage	(MV _{DD} power supply pin)	V _{IN2}	-0.3~MV _{DD} + 0.3	v
Power dissipation	•	PD	1400	mW
Operating tempera	Operating temperature		-40~85	°C
Storage temperatu	Storage temperature		-65~150	°C

Electrical characteristics (unless otherwise specified, Ta = 25°C, $V_{DD} = MV_{DD} = XV_{DD} = DV_{DD} = AV_{DD} = 5 V$, $2V_{REF} = P2V_{REF} = 4.2 V$, $V_{REF} = PV_{REF} = 2.1 V$)

V_{DD} (power supply pins for CD processor block: V_{DD} , XV_{DD} , DV_{DD} , AV_{DD})

Characteristic	Symbol	Test Circuit	Test Condition		Тур.	Max	Unit
Operating power supply voltage range	V _{DD}	_	$MV_{DD} = XV_{DD} \ge V_{DD} = DV_{DD} = AV_{DD}$ *		~	5.5	V
Operating power supply	I _{DD}	_	(V _{DD} , DV _{DD} , AV _{DD}) operating at 16.9344 MHz	_	50	60	mA
current	XI _{DD}	_	(XV _{DD}) 16.9344 MHz crystal oscillator connected	_	2.0	_	ШA
Crystal oscillator standby current	X _{STBY}	_	(XV _{DD}) 16.9344 MHz crystal oscillator off		0.01	_	μA
Crystal oscillator frequency	f _{XT}	_	$C_i = C_o = 15 \text{ pF}$ (Note 1)*	_	16.9344		MHz

MV_{DD} (power supply pins for CPU block: MV_{DD}, XV_{DD}) (Note 2)

Characteristic	Symbol	Test Circuit	Tes	st Condition	Min	Тур.	Max	Unit
	MV _{DD1}		CPU and CD in op $MV_{DD} = XV_{DD} \ge V$	peration / _{DD} = DV _{DD} = AV _{DD} *	4.5	~	5.5	
Operating power supply voltage range	MV_{DD2}	_	CPU in operation /16.9344 MHz crys	(CD off, 4.5 MHz stal oscillator used) *	4.5	~	5.5	V
	MV _{DD3}		CPU in operation (CD off, 75 kHz cr	ystal oscillator used) *	3.0	~	5.5	v
Memory hold voltage range	MV _{HD}	_	Crystal oscillator s (executing CKSTF	topped P instruction) *	2.0	~	5.5	
	MI _{DD1}	_		XI = 16.9344 MHz crystal oscillator connected		3.0	5.0	
	MI _{DD2}		CPU in operation	MXI = 4.5 MHz crystal oscillator connected	_	1.4	2.5	• mA
Operating power supply	MI _{DD3}			MXI = 75 kHz crystal oscillator connected	_	0.3	1.0	
current (Note 3)	MI _{DD4}		Standby mode (crystal oscillator only in operation)	XI = 16.9344 MHz crystal oscillator connected	_	1.5		
	MI _{DD5}			MXI = 4.5 MHz crystal oscillator connected	_	0.25		
	MI _{DD6}	_		MXI = 75 kHz crystal oscillator connected		0.1		
Memory hold current	MI _{HD}	_	Crystal oscillator stopped (executing CKSTP instruction)			0.1	1.0	μA
	f _{MXT1}		4.5 MHz crystal os	scillator set (Note 1)*		4.5	_	MHz
Crystal oscillator frequency	f _{MXT2}	_	75 kHz crystal osc MV _{DD} = 2.7~5.5 V			75	_	kHz
Crystal oscillator start time	t _{st}		Crystal oscillator f	_{mxt} = 75 kHz	_	_	1.0	S

Note 1: Design and set constants according to the crystal oscillator to be connected.

Note 2: The power supply/memory hold current is the value obtained by summing the XV_{DD} and MV_{DD} pin currents.

Note 3: The values are those when the power supply detector function is operating. Setting the function reduces current dissipation by 150 μA (typ.). (Except in Standby mode)

An asterisk (*) indicates the values are guaranteed when $V_{DD} = MV_{DD} = XV_{DD} = DV_{DD} = AV_{DD} = 4.5$ to 5.5 V, and Ta = -40 to 85°C.

LCD common output/output port (COM1/OT1 to COM4/OT4)

Characte	ristic	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Output current	High level	I _{OH1}	_	V _{OH} = 4.5 V (LCD output)	-200	-600	_	μA
	I _{OH2}		V _{OH} = 4.5 V (OT output)	-15	-30		mA	
	Low level	I _{OL1}		$V_{OL} = 0.5 V (LCD output)$	200	600		μA
	Low level	I _{OL5}		V _{OL} = 0.5 V (OT output)	4.0	10	_	mA
	1/2 level	V _{BS2}		No load (LCD output, 1/2 bias method set)	2.3	2.5	2.7	
	1/3 level	V _{BS1}		No load (LCD output 1/3 bias mothod sot)	1.47	1.67	1.87	V
	2/3 level	V _{BS3}		No load (LCD output, 1/3 bias method set)	3.13	3.33	3.53	

Segment output, output ports, I/O ports, and CD function output (S1/OT4 to S9/OT13, S10/OT14/ZDET to S14/OT18/LRCK, P8-0/S14/BCK to P8-3/S18/IPF, OT19)

Characteristic		Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
		I _{OH1}		V _{OH} = 4.5 V (LCD output)	-200	-600	_	μA
Output current	High level	I _{OH4}	_	$V_{OH} = 4.5 V$ (OT output, CD output, excluding P8-0 to P8-3 pins)	-1.5	-4.0	_	mA
	Low level	I _{OL1}		$V_{OL} = 0.5 V (LCD output)$	200	600	_	μA
	LOW IEVEI	I _{OL5}		$V_{OL} = 0.5 V$ (OT output, CD output)	4.0	10	_	mA
Input leakage cur	rrent	ILI		$V_{IH} = 5.0 \text{ V}, V_{IL} = 0 \text{ V} (P8-0~P8-3)$	_		±1.0	μA
	High level	VIH		(P8-0~P8-3, CLCK)	$\frac{\text{MV}_{\text{DD}}}{\times~0.8}$	۲	MV _{DD}	V
Input voltage	Low level	V _{IL}	_	(P8-0~P8-3, CLCK)	0	~	$\frac{\text{MV}_{\text{DD}}}{\times 0.2}$	v
Bias voltage	1/3 level	V _{BS1}	_	No load (LCD output, 1/3 bias method set)	1.47	1.67	1.87	V
	1/2 level	V _{BS3}	_		3.13	3.33	3.53	V

I/O port (P1-0~P4-3)

Characte	ristic	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
	High level	I _{OH3}	_	V _{OH} = 4.5 V	-0.8	-2.0	_	
Output current Low leve	Low level	I _{OL3}	_	V _{OL} = 0.5 V (excluding P4-1, P4-2, P4-3 pins)	1.0	3.0		mA
		I _{OL5}		V _{OL} = 0.5 V (P4-1, P4-2, P4-3 pins)	4.0	10	_	
Input leakage cur	rrent	ILI		$V_{IH} = 5.0 \text{ V}, V_{IL} = 0 \text{ V}$	_	_	±1.0	μA
Input voltage	High level	VIH	_		$\frac{\text{MV}_{\text{DD}}}{\times~0.8}$	1	MV _{DD}	V
mput voltage	Low level	V _{IL}	_	—	0	~	$_{\times \ 0.2}^{MV_{DD}}$	
Input pull-up/dow	n resistance	R _{IN1}		(P1-0 to P1-3 pins) pull-down/up set	25	50	120	kΩ

HOLD, INTR input port, RST RST input, 1-bit DAC data input (EMPHin/HSO in/LRCKin/DATAin/BCKin) Input port (IN1/IN2)

Characte	ristic	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Input leakage cur	rent	ILI	_	$V_{IH} = 5.0 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$	_		±1.0	μA
	High level	VIH	_	—	$\frac{\text{MV}_{\text{DD}}}{\times~0.8}$	1	MV _{DD}	V
Input voltage	Low level	V _{IL}	_	_	0	~	$\frac{\text{MV}_{\text{DD}}}{\times 0.2}$	v

A/D converter (ADin1 to ADin4)

Characteristic	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Analog input voltage range	V _{AD}		ADin1~ADin4	0	~	MV_{DD}	V
Resolution	VRES	_	_	_	6	_	bit
Total conversion error	_		_	_	±0.5	±1.0	LSB
Analog input leakage	ILI		$V_{IH} = 5.0 \text{ V}, V_{IL} = 0 \text{ V} \text{ (ADin1~ADin4)}$	_	_	±1.0	μA

DOUT, SBSY, SBOK, SEL, OT19/HSO, OT20/SPCK, OT21/SPDA, OT22/COFS output

Characte	ristic	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Output current	High level	I _{OH4}		V _{OH} = 4.5 V	-1.5	-4.0	_	mA
Culput cullent	Low level	I _{OL4}	—	$V_{OL} = 0.5 V$	1.5	4.0		ШA

PDO, TMAX, RFGC, TEBC, FMO, DMO, TRO, FOO output

Characte	ristic	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Output current	High level	I _{OH6}	—	$V_{OH} = 3.8 \text{ V}, \text{ P2V}_{REF} = 4.2 \text{ V} \text{ (PDO, TMAX)}$	_	-2.0	_	mA
	Low level	I _{OL4}	_	V_{OL} = 0.5 V, $P2V_{REF}$ = 4.2 V (PDO, TMAX)	_	6.0		111/2
Output resistance	e	R _{out3}	_	(RFGC, TEBC, FMO, DMO, TRO, FOO)		3.3		kΩ
V _{REF} output volta	age	V _{oref}	_	(RFGC, TEBC, FMO, DMO, PDD) $V_{REF} = PV_{REF} = 2.1 V$		2.1		V

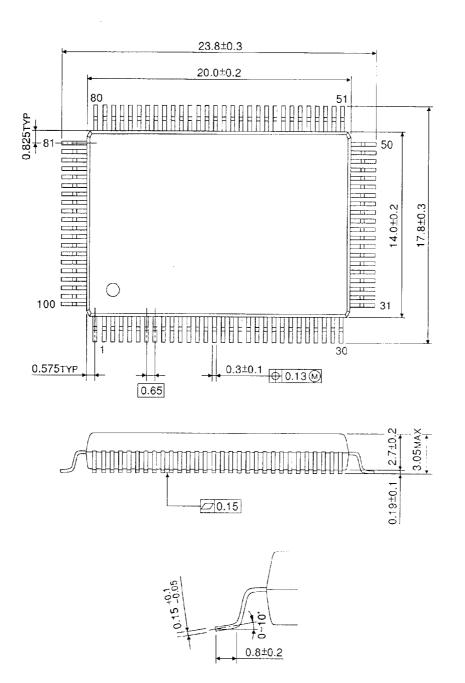
Transfer delay time (AOUT, SPDA, DATA, SBSY, SBOK)

Characte	ristic	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Transfer delay High lev	High level	t _{pLH}			_	10	_	20
time	Low level	t _{pHL}	_	_	_	10	_	ns

1-bit DA converter

Characteristic	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Total harmony distortion	THD + N		1 kHz sine wave, full-scale input	_	-85	-78	
S/N ratio	S/N			90	98		dB
Dynamic range	DR		1 kHz sine wave, based on -60dB input	85	90	_	uБ
Crosstalk	СТ		1 kHz sine wave, full-scale input		-90	-85	
Analog output level	DAC _{out}		1 kHz sine wave, full-scale input	1200	1250	1300	mVrms

Others


Characteristic	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Input pull-down resistance	R _{IN2}	_	(TESTC, TESTM)	_	10	_	kΩ
XI amp feedback resistance	R _{fXT1}	_	(XI-XO)	1.0	2.0	4.0	MΩ
XO output resistance	R _{out1}	_	(XO)	_	0.5	_	kΩ
MXI amp feedback resistance	R _{fXT2}		When 4.5 MHz crystal set, (MXI-MXO)	0.5	1.0	2.5	MΩ
			When 75 kHz crystal set, (MXI-MXO)		10		1712.2
MXO output resistance	R _{out2}		(MXO)	_	2.0	_	kΩ
					10		
	7		Set registered by (DEI) CD command		5.0		kΩ
Input resistance	Z _{in1}		Set resistance by (RFI) CD command		2.5		
					1.25		
	Z _{in2}		(TEZI)		10	_	

Package Dimensions

.

QFP100-P-1420-0.65A

Unit: mm

Weight: 1.6 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability"
- Handbook" etc..
 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.