

August 2006

FSAV433

High-Bandwidth (550MHz) Three-Channel 3:1 Video Switch

Features

- Ground between channels to optimize isolation and reduce hostile crosstalk
- -70dB non-adjacent channel crosstalk at 30MHz
- 6.5Ω typical On Resistance (R_{ON})
- -3dB bandwidth: 550MHz
- Low power consumption (1µA max)

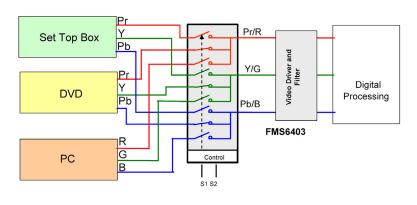
Applications

- RGB Video Switch in LCD, Plasma, and Projection displays
- DVD-RW, notebook

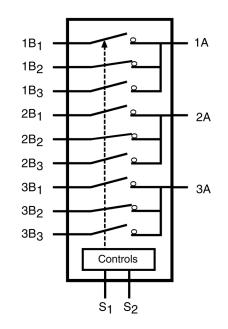
Ordering Information

Description

The FSAV433 is an ultra-low power, high-bandwidth video switch specially designed for switching three analog video signals, including computer RGB and high-definition YPbPr signals. The wide bandwidth (550MHz) of the switch allows signal passage with minimum edge and phase distortion, while –70dB non-adjacent channel crosstalk generates negligible image noise between active channels. Optimized differential gain and phases maintain the image integrity of video applications, while low On Resistance offers low signal insertion loss.


The Fairchild switch family derives from and embodies Fairchild's proven switch technology used for years in its 74LVX3L384 (FST3384) bus switch product.

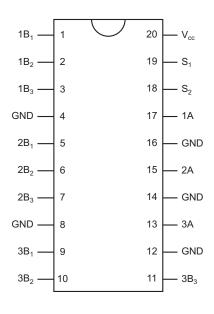
-				
Order Number	Package Number	Pb- Free ⁽¹⁾	Backage Description	
FSAV433BQX	MLP020B	Yes	20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm	Tape & Reel
FSAV433MTC	MTC20	Yes	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	Tube
FSAV433MTCX	MTC20	Yes	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	Tape & Reel

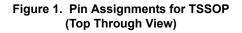

Notes:

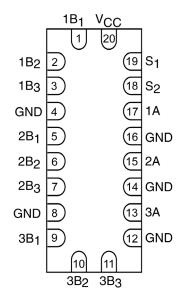
1. Pb-Free package per JEDEC J-STD-020B.

Application Diagram

Analog Symbol


Pin Descriptions


Pin Name	Description
S ₁ , S ₂	Select Input
A	Bus A
B ₁ –B ₃	Bus B


Truth Table

S ₁	S ₂	Function
Low	Low	Disconnect
Low	High	A = B ₁
High	Low	A = B ₂
High	High	A = B ₃

Connection Diagrams

Figure 2. Pad Assignments for DQFN (Top Through View)

Absolute Maximum Ratings

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table defines the conditions for actual device operation

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Supply Voltage	-0.5	+4.6	V
V _S	DC Switch Voltage	-0.5V to V_{CC}	+0.05	
V _{IN}	DC Input Voltage ⁽²⁾	-0.5 to	+4.6	V
I _{IK}	DC Input Diode Current V _{IN} < 0V		-50	mA
I _{OUT}	DC Output Sink Current		100	mA
I _{CC} /I _{GND}	DC V _{CC} /GND Current		±100	mA
T _{STG}	T _{STG} Storage Temperature Range		+150	°C
ESD	Human Body Model		7	kV

Notes:

2. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions⁽³⁾

Symbol	Parameter		Max.	Units
V _{CC}	V _{CC} Power Supply Operating		3.6	V
V _{IN}	V _{IN} Input Voltage		V _{CC}	
T _A Free Air Operating Temperature		-40	+85	°C

Notes:

3. Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

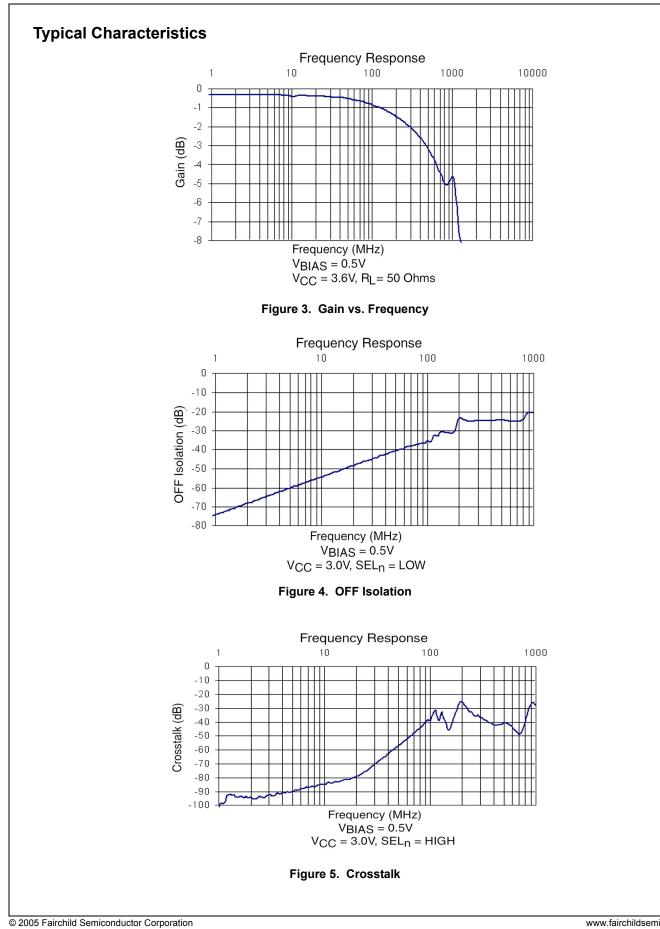
Typical values are at T_A = +25°C unless otherwise specified.

			V	T _A = -	40 °C 1	to +85	
Symbol	Parameter	Conditions	V _{CC} (V)		°C	Unit	
			(•)	Min.	Тур.	Max.	
	Analog Signal Range			0		2.0	V
V _{IK}	Clamp Diode Voltage	I _{IN} = –18 mA	3.0			-1.2	V
V _{IH}	HIGH Level Input Voltage		2.3	1.8			
			3.0 - 3.6	2.0			V
V _{IL}	LOW Level Input Voltage		2.3			0.7	
			3.0 - 3.6			0.8	V
I _I	Input Leakage Current	$0 \le V_{IN} \le 3.6V$	3.6			±1.0	μA
I _{OFF}	OFF-STATE Leakage Current	$0 \le A, B \le V_{CC}$, See Figure 7	3.6			±1.0	μA
R _{ON}	Switch On Resistance ⁽⁴⁾	V _{IN} = 1.0V	2.3		9.0	13.0	Ω
		I _{ON} = 13 mA, See Figure 6	3.0		6.5	9.0	Ω
		V _{IN} = 2.0V	2.3		10.0	15.0	Ω
		I _{ON} = 26 mA, See Figure 6	3.0		6.5	9.0	Ω
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$	3.6			1.0	μA
I _{CCT}	Increase in I _{CC} per Control	One Control Input at 3.0V	3.6			10.0	μA
	Input	Other Inputs at V_{CC} or GND					

Notes:

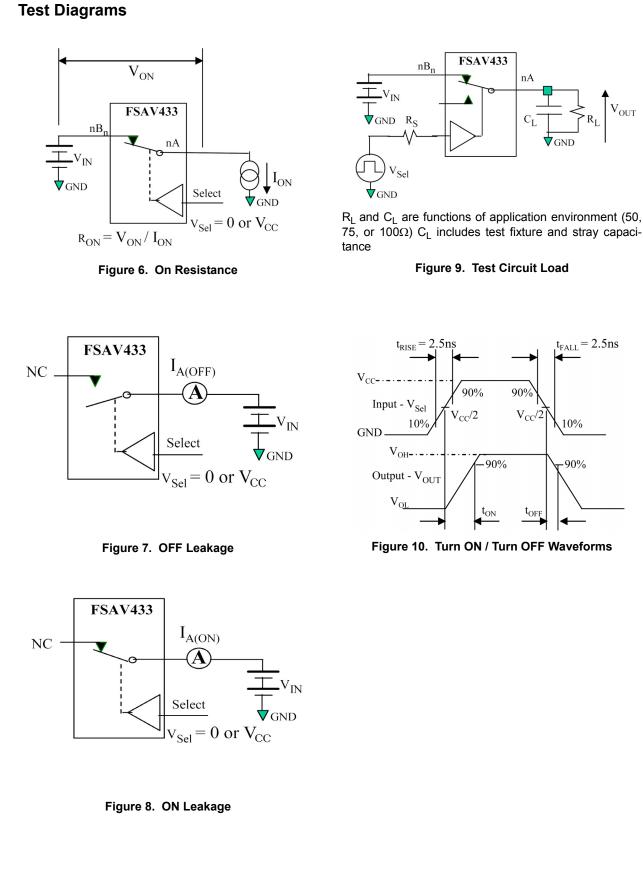
4. Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

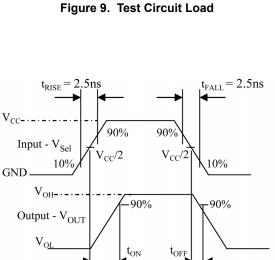
AC Electrical Characteristics


Typical values are at V_{CC} = 3.3V and T_A = +25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc}	T _A =	40°C to	+85°C	Units	Figure
Symbol	Farameter	Conditions	(V) Min.		Тур.	Max.	Onits	Number
t _{ON}	Turn ON Time S-to-Bus A	V _B = 2.0V	3.0 to 3.6			5.5		Figures
		v _B – 2.0v	2.3 to 2.7			7.0	ns	9,10
t _{OFF}	Turn OFF Time S-to-Bus A	y = 2.0y	3.0 to 3.6			4.0		Figures
		V _B = 2.0V	2.3 to 2.7			5.0	ns	9,10
DG	Differential Gain	R _L = 75Ω,f= 3.58MHz	3.0 to 3.6		0.2		%	
DP	Differential Phase	R _L = 75Ω,f= 3.58MHz	3.0 to 3.6		0.1		0	
O _{IRR}	Non-Adjacent OFF-Isolation	f = 30MHz, $R_L = 75\Omega$	3.0 to 3.6		-45.0			
	Adjacent OFF-Isolation		2.3 to 2.7		-45.0		dB	Figure 12
X _{TALK}	Non-Adjacent Channel Crosstalk	R _L = 75Ω, f= 30MHz	3.0 to 3.6		-70.0			Figures
	Adjacent Channel Crosstalk		2.3 to 2.7		-70.0		dB	13,14
BW	-3dB Bandwidth	R _L = 50Ω	3.0 to 3.6		550			
		R _L = 75Ω	3.0 to 3.6		300		MHz	Figure 11

Capacitance


Typical values are at V_{CC} = 3.3V and T_A = +25°C unless otherwise specified.

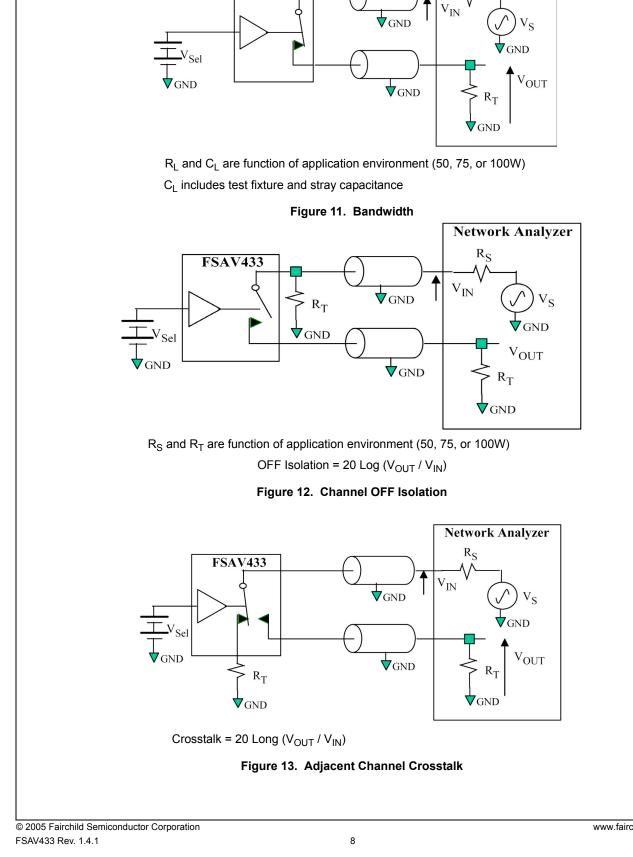

Symbol	Parameter	Conditions	T _A = −40°C to +85°C	Units	Figure Number
C _{IN}	Control Pin Input Capacitance	$V_{CC} = 0V$	3.0	pF	
C _{ON}	A/B ON Capacitance	$V_{CC} = 3.0V = 0V$	15.0	pF	Figure 16
C _{OFF}	Port B OFF Capacitance	V _{CC} = 3.0V	4.0	pF	Figure 15

OUT

FSAV433

nA

nB_n

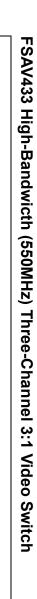

IN

GND Rs

GND

Figure 10. Turn ON / Turn OFF Waveforms

t_{ON}



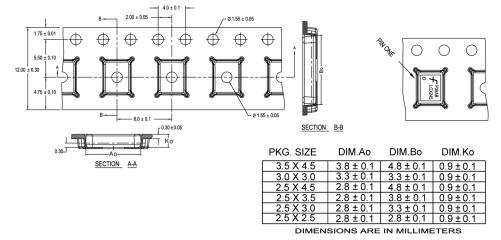
FSAV433

Test Diagrams

Network Analyzer

RS

Test Diagrams (Continued) Network Analyzer NC R_S FSAV433 V_{IN} GND GND R_T GND ♥GND V_{OUT} **GND V**GND R_S and R_T are function of application environment (50, 75, or $100\Omega)$ Crosstalk = 20 Long (V_{OUT} / V_{IN}) Figure 14. Non-Adjacent Channel-to-Channel Crosstalk FSAV433 nB_n Capacitance $v_{Sel} = 0$ or V_{CC} Meter F = 1 MHznB_n Figure 15. Channel OFF Capacitance FSAV433 Capacitance nB_n Meter nS_r $v_{Sel} = 0$ or V_{CC} F = 1MHznB_n Figure 16. Channel ON Capacitance

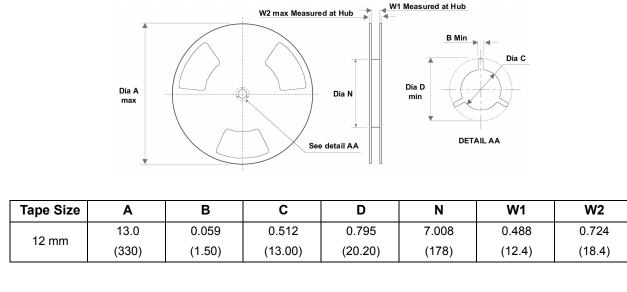

Tape and Reel Specification

Tape Format for DQFN

Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
BQX	Carrier	2500/3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

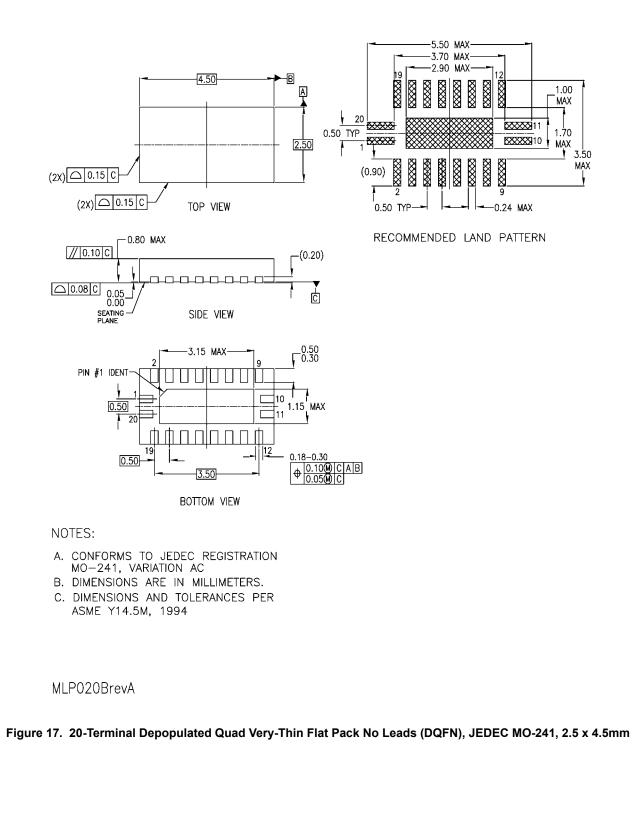
Tape Dimensions

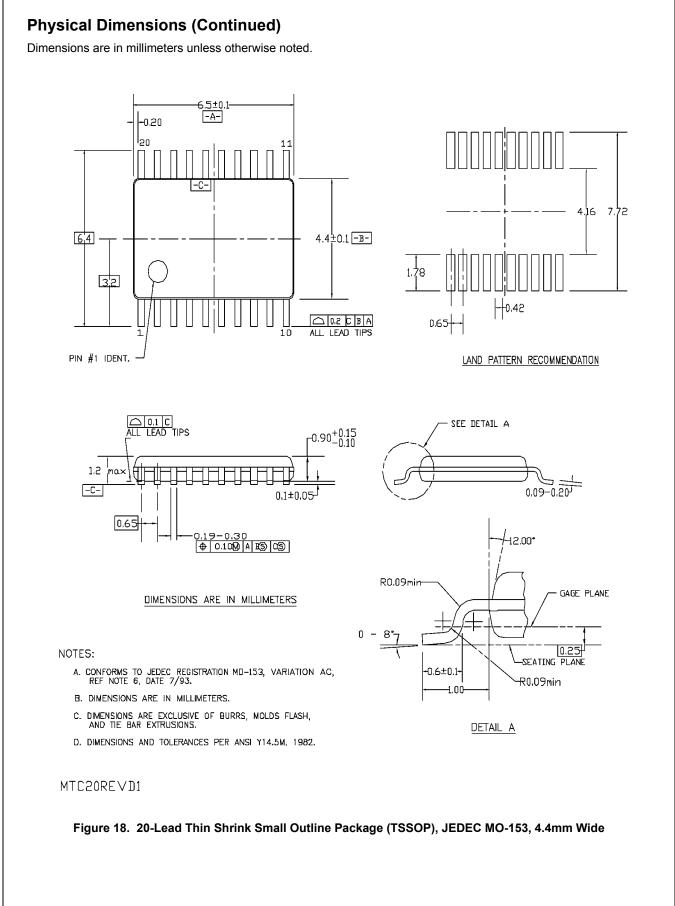
Dimensions are in millimeters unless otherwise noted.



NOTES: unless otherwise specified

- 1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed 0.008[0.20] over 10 pitch span.
- 2. Smallest allowable bending radius.
- 3. Thru hole inside cavity is centered within cavity.
- 4. Tolerance is $\pm 0.002[0.05]$ for these dimensions on all 12mm tapes.
- 5. Ao and Bo measured on a plane 0.120[0.30] above the bottom of the pocket.
 6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
 Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
- Pocket position relative to sprocket hole measured as true position of po 8. Controlling dimension is millimeter. Diemension in inches rounded.


REEL DIMENSIONS


Dimensions are in millimeters unless otherwise noted.

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FACT Quiet Series™ OCX™ ActiveArray™ GlobalOptoisolator™ OCXPro™ Bottomless™ GTO™ OPTOLOGIC® Build it Now™ HiSeC™ OPTOPLANAR™ CoolFET™ I²C™ PACMAN™ CROSSVOLT™ i-Lo™ POP™ DOME™ ImpliedDisconnect™ Power247™ EcoSPARK™ IntelliMAX™ PowerEdge™ E^2CMOS™ ISOPLANAR™ PowerSaver™ EnSigna™ LittleFET™ PowerSaver™ FAST® MicroFET™ QFET® FAST® MicroPak™ QT Optoelectrom FRFET™ MSXPro™ RapidConnect™ FRFET™ MSXTM RapidConnect™ FACross the board. Around the world.™ µSerDes™ ScalarPump™ The Power Franchise® ScalarPump™ ScalarPump™	SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TCM™ TinyBoost™ TinyBoost™ TinyBuck™ TinyPWM™ TinyPWM™ TinyPower™
--	---

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. 120