

www.ti.com

FEATURES

- Single-Chip and Single-Supply Interface for IBM[™] PC/AT[™] Serial Port
- ESD Protection for RS-232 Bus Pins - ±15-kV Human-Body Model (HBM)
 - ±8-kV IEC61000-4-2, Contact Discharge
 - ±15-kV IEC61000-4-2, Air-Gap Discharge
- Meets or Exceeds Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- **Always-Active Noninverting Receiver Output** (ROUT2B)
- Designed to Transmit at a Data Rate up to 500 kbit/s
- Low Standby Current . . . 1 µA Typ
- External Capacitors . . . 4 \times 0.1 μ F
- Accepts 5-V Logic Input With 3.3-V Supply
- **Designed to Be Interchangeable With Maxim MAX3243E**
- Serial-Mouse Driveability
- Auto-Powerdown Feature to Disable Driver **Outputs When No Valid RS-232 Signal Is** Sensed
- Applications
 - Battery-Powered Systems, PDAs, Notebooks, Laptops, Palmtop PCs, and Hand-Held Equipment
- **Package Options Include Plastic** Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages

DESCRIPTION

A

The MAX3243E device consists of three line drivers, five line receivers, and a dual charge-pump circuit with ±15-kV ESD (HBM and IEC61000-4-2, Air-Gap Discharge) and ±8-kV ESD (IEC61000-4-2, Contact Discharge) protection on serial-port connection pins. The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. This combination of drivers and receivers matches that needed for the typical serial port used in an IBM PC/AT, or compatible. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, the device includes an always-active noninverting output (ROUT2B), which allows applications using the ring indicator to transmit data while the device is powered down. The device operates at data signaling rates up to 250 kbit/s and a maximum of 30-V/us driver output slew rate.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. IBM, PC/AT are trademarks of International Business Machines Corporation.

SLLS657A-APRIL 2005-REVISED JUNE 2005

SLLS657A-APRIL 2005-REVISED JUNE 2005

DESCRIPTION (CONTINUED)

Flexible control options for power management are available when the serial port is inactive. The auto-powerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs are disabled. If FORCEOFF is set low, both drivers and receivers (except ROUT2B) are shut off, and the supply current is reduced to 1 μ A. Disconnecting the serial port or turning off the peripheral drivers causes the auto-powerdown condition to occur.

Auto-powerdown can be disabled when FORCEON and FORCEOFF are high, and should be done when driving a serial mouse. With auto-powerdown enabled, the device is activated automatically when a valid signal is applied to any receiver input. The INVALID output is used to notify the user if an RS-232 signal is present at any receiver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V or has been between -0.3 V and 0.3 V for less than 30 μ s. INVALID is low (invalid data) if all receiver input voltages are between -0.3 V and 0.3 V for more than 30 μ s. Refer to Figure 5 for receiver input levels.

The MAX3243EC is characterized for operation from 0°C to 70°C. The MAX3243EI is characterized for operation from –40°C to 85°C.

	PACKAGED DEVICES ⁽¹⁾						
T _A	SHRINK SMALL OUTLINE (DB)	SMALL OUTLINE (DB)	THIN SHRINK SMALL OUTLINE (PW)	QUAD FLAT NO-LEAD (RHB)			
0°C to 70°C	MAX3243ECDB	MAX3243ECDW	MAX3243ECPW	MAX3243ECRHBR (Preview)			
–40°C to 85°C	MAX3243EIDB	MAX3243EIDW	MAX3243EIPW	MAX3243EIRHBR (Preview)			

AVAILABLE OPTIONS

(1) The DB, DW, and PW packages are available in both tube and taped & reeled. Add the suffix R to orderable (e.g. MAX3243ECDBR for taped & reeled version).

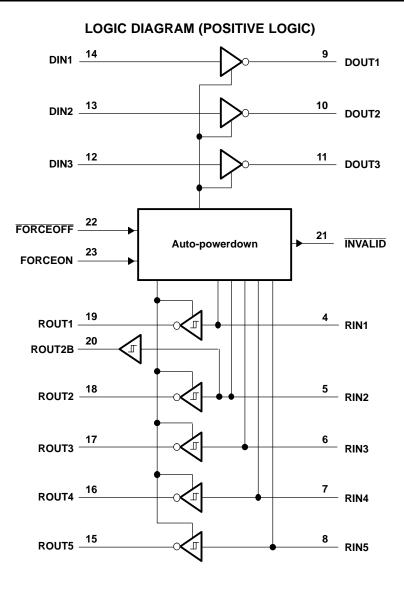
SLLS657A-APRIL 2005-REVISED JUNE 2005

FUNCTION TABLES

EACH DRIVER⁽¹⁾

	I	NPUTS		OUTPUT	
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATUS
Х	Х	L	Х	Z	Powered off
L	Н	Н	Х	Н	Normal operation with
Н	Н	н	Х	L	auto-powerdown disabled
L	L	Н	Yes	Н	Normal operation with
н	L	н	Yes	L	auto-powerdown enabled
L	L	Н	No	Z	Powered off by
н	L	н	No	Z	auto-powerdown feature

(1) H = high level, L = low level, X = irrelevant, Z = high impedance


INPUTS OUTPUTS RECEIVER VALID RIN RIN1, STATUS FORCEOFF **ROUT2B** RIN2 ROUT RIN3-RIN5 **RS-232 LEVEL** L Х Х L Ζ L Powered off while ROUT2B is active н Х Х н Ζ L L L н Yes L н L Н Normal operation Н Yes L L with н L н н Н Yes auto-powerdown н н н н disabled/enabled Yes L Open н Yes L н Open

EACH RECEIVER⁽¹⁾

 H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

SLLS657A-APRIL 2005-REVISED JUNE 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range ⁽²⁾		-0.3	6	V
V+	Positive output supply voltage range ⁽²⁾		-0.3	7	V
V–	Negative output supply voltage range ⁽²⁾		0.3	-7	V
V+ - V-	Output supply voltage difference ⁽²⁾			13	V
VI	Innut voltage range	Driver (FORCEOFF, FORCEON)	-0.3	6	V
	Input voltage range	Receiver	-25	25	v
V		Driver	-13.2	13.2	V
Vo	Output voltage range	Receiver (INVALID)	-0.3	V _{CC} + 0.3	V
		DB package		62	
θ_{JA}	Package thermal impedance ⁽³⁾⁽⁴⁾	DW package		46	°C/W
		PW package		62	
	Lead temperature 1,6 mm (1/16 in) from cas	e for 10 s		260	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltages are with respect to network GND. (2)

Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7. (3)

(4)

Recommended Operating Conditions⁽¹⁾

See Figure 6

				MIN	NOM	MAX	UNIT
	Supply voltage	$V_{CC} = 3.3 V$	3	3.3	3.6	v	
	Supply voltage	$V_{CC} = 5 V$	4.5	5	5.5	v	
V	(IH Driver and control high-level input voltage	DIN, FORCEOFF, FORCEON	$V_{CC} = 3.3 V$	2			v
VIH	Driver and control high-level input voltage	DIN, FORCEOFF, FORCEON	$V_{CC} = 5 V$	2.4			v
V_{IL}	Driver and control low-level input voltage	DIN, FORCEOFF, FORCEON				0.8	V
VI	Driver and control input voltage	DIN, FORCEOFF, FORCEON		0		5.5	V
VI	Receiver input voltage			-25		25	V
т	Concreting free cit temperature		MAX3243EC	0		70	°C
T _A	Operating free-air temperature		MAX3243EI	-40		85	

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER		TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I_{I}	Input leakage current	FORCEOFF, FORCEON			±0.01	±1	μA
		Auto-powerdown disabled	No load, FORCEOFF and FORCEON at V_{CC}		0.3	1	mA
	Supply current	Powered off	No load, FORCEOFF at GND		1	10	
Icc	Supply current ($T_A = 25^{\circ}C$)	Auto-powerdown enabled	No load, FORCEOFF at V_{CC} , FORCEON at GND, All RIN are open or grounded, All DIN are grounded		1	10	μΑ

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (1)

(2)

SLLS657A-APRIL 2005-REVISED JUNE 2005

DRIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TE	ST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH}	High-level output voltage	All DOUT at $R_L = 3 \text{ k}\Omega$ to (GND		5	5.4		V
V _{OL}	Low-level output voltage	All DOUT at $R_L = 3 \text{ k}\Omega$ to (GND		-5	-5.4		V
Vo	Output voltage (mouse driveability)	DIN1 = DIN2 = GND, DIN3 DOUT1 = DOUT2 = 2.5 m		GND at DOUT3,	±5			V
I _{IH}	High-level input current	$V_I = V_{CC}$				±0.01	±1	μA
IIL	Low-level input current	V _I at GND				±0.01	±1	μA
V _{hys}	Input hysteresis						±1	V
	Short-circuit output current ⁽³⁾	V _{CC} = 3.6 V,	$V_0 = 0 V$				±60	mA
IOS		V _{CC} = 5.5 V,	$V_0 = 0 V$				±00	ШA
r _o	Output resistance	V_{CC} , V+, and V- = 0 V,	$V_0 = \pm 2 V$		300	10M		Ω
I _{off}	Output leakage current	FORCEOFF = GND,	$V_{O} = \pm 12 V$,	V_{CC} = 0 to 5.5 V			±25	μA

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one (3)output should be shorted at a time.

Switching Characteristics⁽¹⁾

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

PARAMETER		TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate	C _L = 1000 pF, One DOUT switching,	$R_L = 3 k\Omega$ See Figure 1	250	500		kbit/s
t _{sk(p)}	Pulse skew ⁽³⁾	$C_{L} = 150 \text{ pF} \text{ to } 2500 \text{ pF},$	$R_L = 3 k\Omega$ to 7 k Ω , See Figure 2		100		ns
0.5 (1.)	Slew rate, transition region	$V_{CC} = 3.3 V,$	C _L = 150 pF to 1000 pF	6		30	
SR(tr)	(see Figure 1)	$R_L = 3 k\Omega$ to 7 kΩ, PRR = 250 kbit/s	C _L = 150 pF to 2500 pF	4		30	V/μs

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V + 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device. (1)

(2)

(3)

ESD Protection

PARAMETER	TEST CONDITIONS	TYP	UNIT
	НВМ	±15	kV
Driver outputs (pins 9–11)	IEC61000-4-2, Air-Gap Discharge	±15	kV
	IEC61000-4-2, Contact Discharge	±8	kV

SLLS657A-APRIL 2005-REVISED JUNE 2005

RECEIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	$V_{CC} - 0.6$	V _{CC} – 0.1		V
V _{OL}	Low-level output voltage	I _{OH} = 1.6 mA			0.4	V
V	Depitive going input threshold voltage	$V_{CC} = 3.3 V$		1.6	2.4	V
V _{IT+}	Positive-going input threshold voltage	$V_{CC} = 5 V$		1.9	2.4	
V	Negative going input threaded values	V _{CC} = 3.3 V	0.6	1.1		V
V _{IT-}	Negative-going input threshold voltage	$V_{CC} = 5 V$	0.8	1.4		v
V_{hys}	Input hysteresis (V _{IT+} – V _{IT–})			0.5		V
I _{off}	Output leakage current (except ROUT2B)	FORCEOFF = 0 V		±0.05	±10	μA
r _i	Input resistance	$V_1 = \pm 3 \text{ V or } \pm 25 \text{ V}$	3	5	7	kΩ

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (1)

(2)

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	C _L = 150 pF, See Figure 3	150	ns
t _{PHL}	Propagation delay time, high- to low-level output		150	ns
t _{en}	Output enable time	C_L = 150 pF, R_L = 3 k Ω , See Figure 4	200	ns
t _{dis}	Output disable time		200	ns
t _{sk(p)}	Puse skew ⁽³⁾	See Figure 3	50	ns

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device. (1)

(2)

(3)

ESD Protection

PARAMETER	TEST CONDITIONS	TYP	UNIT
	НВМ	±15	kV
Driver outputs (pins 4–8)	IEC61000-4-2, Air-Gap discharge	±15	kV
	IEC61000-4-2, Contact Discharge	±8	kV

TEXAS INSTRUMENTS www.ti.com

SLLS657A-APRIL 2005-REVISED JUNE 2005

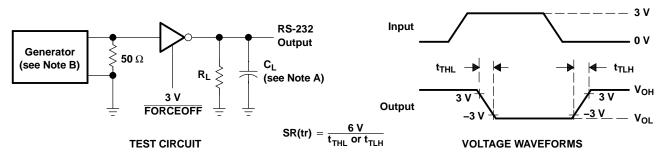
AUTO-POWERDOWN SECTION

Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{IT+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FORCEOFF = V _{CC}		2.7	V
V _{IT-(valid)}	Receiver input threshold for INVALID high-level output voltage	$\frac{\text{FORCEON} = \text{GND},}{\text{FORCEOFF} = V_{\text{CC}}}$	-2.7		V
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND, FORCEOFF = V _{CC}	-0.3	0.3	V
V _{OH}	INVALID high-level output voltage	I_{OH} = -1 mA, FORCEON = GND, FORCEOFF = V _{CC}	V _{CC} – 0.6		V
V _{OL}	INVALID low-level output voltage	I_{OL} = 1.6 mA, FORCEON = GND, FORCEOFF = V _{CC}		0.4	V

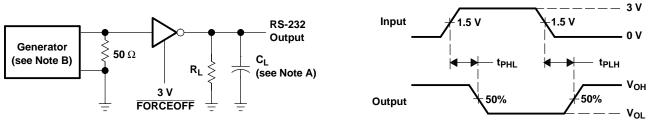
Switching Characteristics


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CONDITIONS	TYP ⁽¹⁾	UNIT
t _{valid}	Propagation delay time, low- to high-level output	$V_{CC} = 5 V$	1	μs
t _{invalid}	Propagation delay time, high- to low-level output	$V_{CC} = 5 V$	30	μs
t _{en}	Supply enable time	$V_{CC} = 5 V$	100	μs

(1) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25 ^{\circ}C.

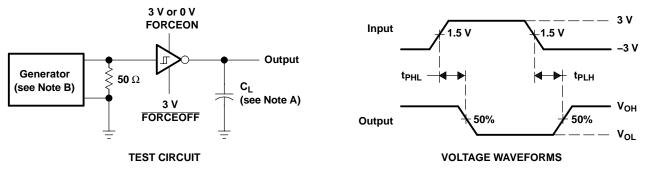
SLLS657A-APRIL 2005-REVISED JUNE 2005


PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns, $t_f \le 10$ ns.

Figure 1. Driver Slew Rate


TEST CIRCUIT

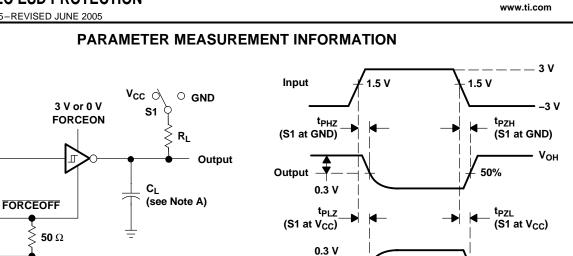
VOLTAGE WAVEFORMS

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 2. Driver Pulse Skew

NOTES: A. C_L includes probe and jig capacitance. B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10 \text{ ns}$, $t_f \le 10 \text{ ns}$.


Figure 3. Receiver Propagation Delay Times

SLLS657A-APRIL 2005-REVISED JUNE 2005

3 V or 0 V

Generator

(see Note B)

Output

TEST CIRCUIT

VOLTAGE WAVEFORMS

Ŀ

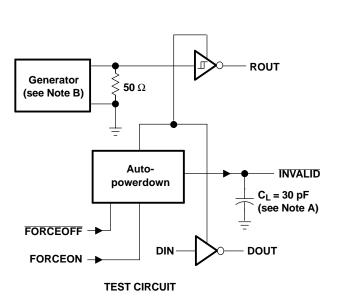
50%

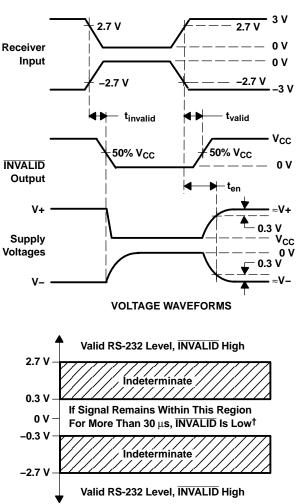
VoL

TEXAS INSTRUMENTS

NOTES: A. C_L includes probe and jig capacitance.

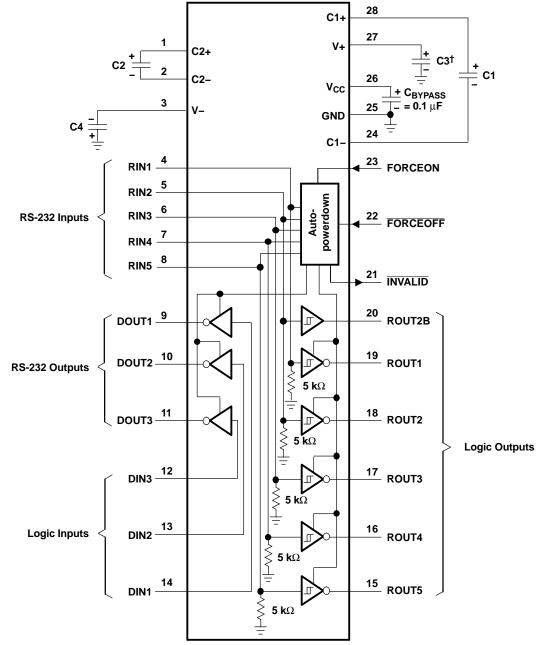
-


- B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.
- C. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- D. t_{PZL} and t_{PZH} are the same as t_{en} .


Figure 4. Receiver Enable and Disable Times

SLLS657A-APRIL 2005-REVISED JUNE 2005

PARAMETER MEASUREMENT INFORMATION


 † Auto-powerdown disables drivers and reduces supply current to 1 $\mu A.$

- NOTES: A. C_L includes probe and jig capacitance.
 - B. The pulse generator has the following characteristics: PRR = 5 kbit/s, Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.

Figure 5. INVALID Propagation Delay Timnes and Supply Enabling Time

SLLS657A-APRIL 2005-REVISED JUNE 2005

APPLICATION INFORMATION

[†] C3 can be connected to V_{CC} or GND.

NOTES: A. Resistor values shown are nominal.

B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

V_{CC} vs CAPACITOR VALUES

V _{CC}	C1	C2, C3, and C4
$\begin{array}{c} \textbf{3.3 V} \pm \textbf{0.3 V} \\ \textbf{5 V} \pm \textbf{0.5 V} \\ \textbf{3 V to 5.5 V} \end{array}$	0.1 μF 0.047 μF 0.1 μF	0.1 μF 0.33 μF 0.47 μF

APPLICATION INFORMATION

ESD Protection

TI MAX3243E devices have standard ESD protection structures incorporated on the pins to protect against electrostatic discharges encountered during assembly and handling. In addition, the RS232 bus pins (driver outputs and receiver inputs) of these devices have an extra level of ESD protection. Advanced ESD structures were designed to successfully protect these bus pins against ESD discharge of \pm 15-kV in all states: normal operation, shutdown, and powered down. The MAX3243E devices are designed to continue functioning properly after an ESD occurrence without any latchup.

The MAX3243E devices have three specified ESD limits on the driver outputs and receiver inputs, with respect to GND:

- ±15-kV Human Body Model (HBM)
- ±15-kV IEC61000-4-2, Air-Gap Discharge (formerly IEC1000-4-2)
- ±8-kV IEC61000-4-2, Contact Discharge

ESD Test Conditions

ESD testing is stringently performed by TI, based on various conditions and procedures. Please contact TI for a reliability report that documents test setup, methodology, and results.

Human Body Model (HBM)

The Human Body Model of ESD testing is shown in Figure 7, while Figure 8 shows the current waveform that is generated during a discharge into a low impedance. The model consists of a 100-pF capacitor, charged to the ESD voltage of concern, and subsequently discharged into the DUT through a 1.5k- Ω resistor.

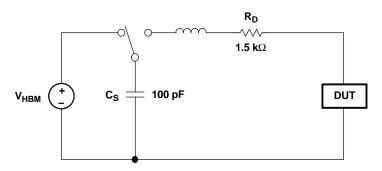


Figure 7. HBM ESD Test Circuit

SLLS657A-APRIL 2005-REVISED JUNE 2005

APPLICATION INFORMATION

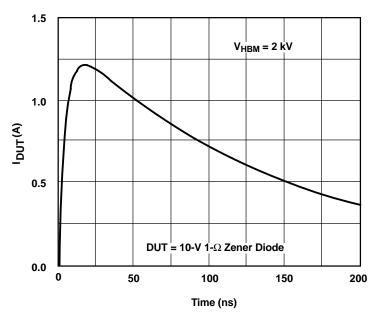


Figure 8. Typical HBM Current Waveform

IEC61000-4-2 (Formerly Known as IEC1000-4-2)

Unlike the HBM, MM, and CDM ESD tests that apply to component level integrated circuits, the IEC61000-4-2 is a system-level ESD testing and performance standard that pertains to the end equipment. The MAX3243E is designed to enable the manufacturer in meeting the highest level (Level 4) of IEC61000-4-2 ESD protection with no further need of external ESD protection circuitry. The more stringent IEC test standard has a higher peak current than the HBM, due to the lower series resistance in the IEC model.

Figure 9 shows the IEC61000-4-2 model, and Figure 10 shows the current waveform for the corresponding \pm 8-kV Contact-Discharge (Level 4) test. This waveform is applied to a probe that has been connected to the DUT. On the other hand, the corresponding \pm 15-kV (Level 4) Air-Gap Discharge test involves approaching the DUT with an already energized probe.

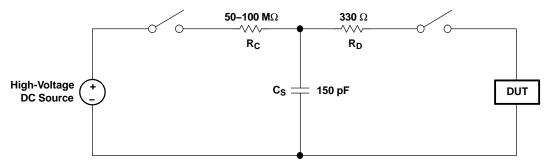


Figure 9. Simplified IEC61000-4-2 ESD Test Circuit

SLLS657A-APRIL 2005-REVISED JUNE 2005

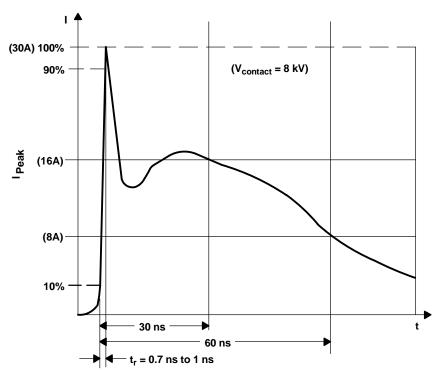


Figure 10. Typical Current Waveform of IEC61000-4-2 ESD Generator

Machine Model

The Machine Model (MM) ESD test applies to all pins using a 200-pF capacitor with no discharge resistance. The purpose of the MM test is to simulate possible ESD conditions that can occur during the handling and assembly processes of manufacturing. In this case, ESD protection is required for all pins, not just RS-232 pins. However, after PC board assembly, the MM test is no longer as pertinent to the RS-232 pins.

12-Sep-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MAX3243ECDB	ACTIVE	SSOP	DB	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243ECDBE4	ACTIVE	SSOP	DB	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243ECDBR	ACTIVE	SSOP	DB	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243ECDBRE4	ACTIVE	SSOP	DB	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243ECDW	ACTIVE	SOIC	DW	28	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243ECDWR	ACTIVE	SOIC	DW	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243ECPW	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243ECPWE4	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243ECPWR	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243ECPWRE4	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243ECRHBR	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
MAX3243ECRHBRG4	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
MAX3243EIDB	ACTIVE	SSOP	DB	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243EIDBR	ACTIVE	SSOP	DB	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243EIDW	ACTIVE	SOIC	DW	28	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243EIDWR	ACTIVE	SOIC	DW	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243EIPW	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243EIPWE4	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243EIPWR	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243EIPWRE4	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX3243EIRHBR	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
MAX3243EIRHBRG4	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

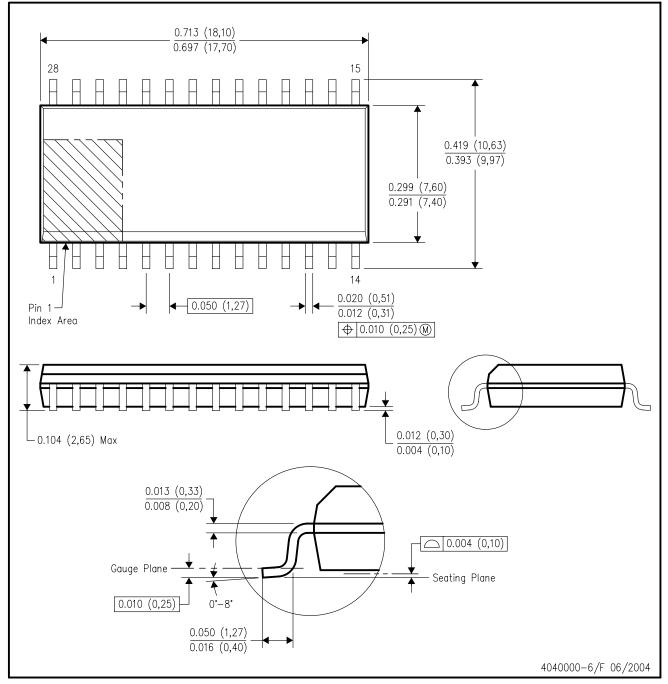
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

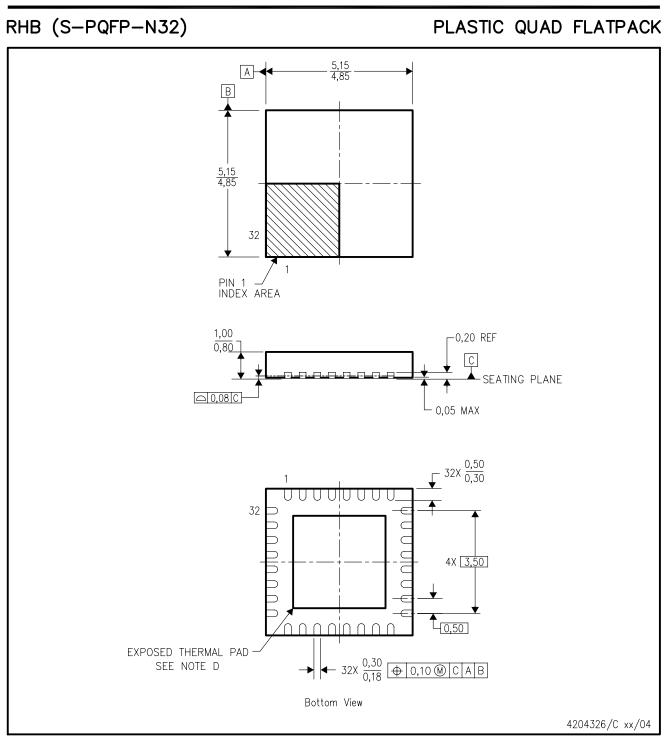

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DW (R-PDSO-G28)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

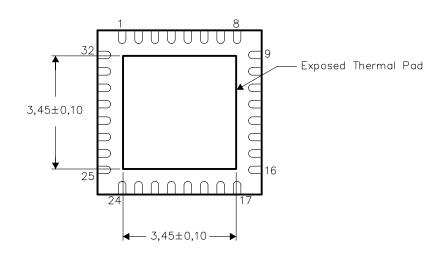
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AE.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- D The Package thermal pad must be soldered to the board for thermal and mechanical performance.
- See product data sheet for details regarding the exposed thermal pad dimensions.
- E. Falls within JEDEC MO-220.

THERMAL PAD MECHANICAL DATA

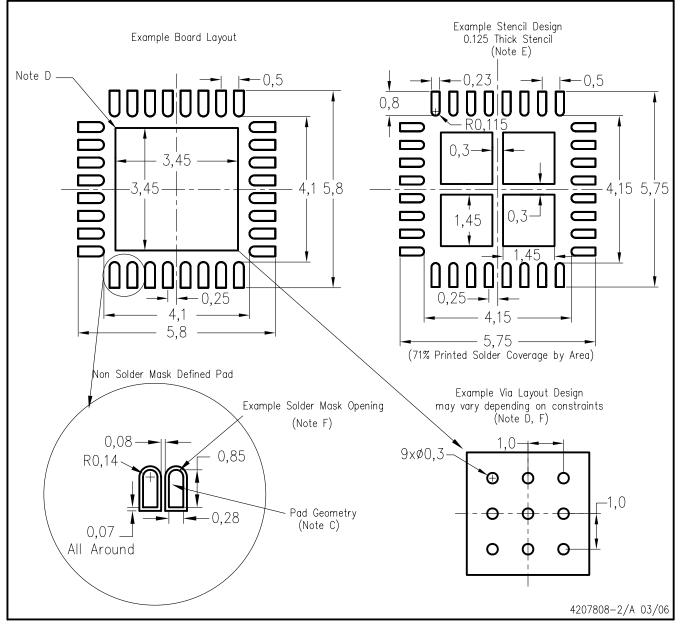

RHB (S-PQFP-N32)

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to a ground or power plane (whichever is applicable), or alternatively, a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No-Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



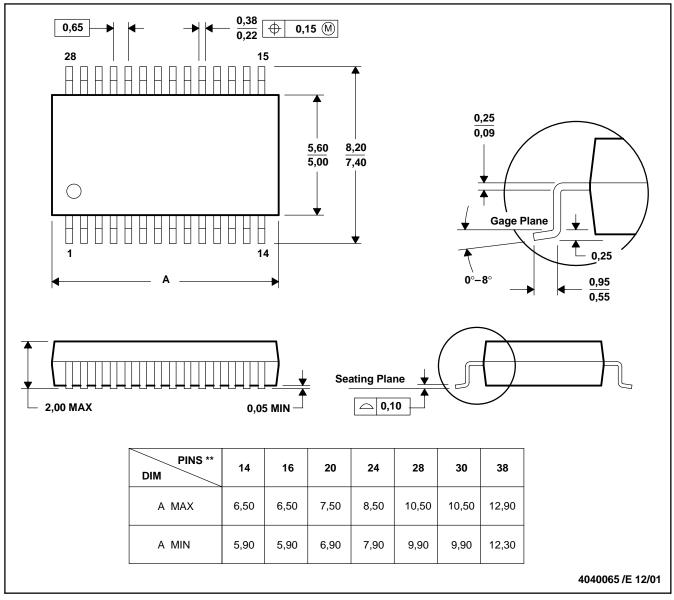
NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

RHB (S-PQFP-N32)

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

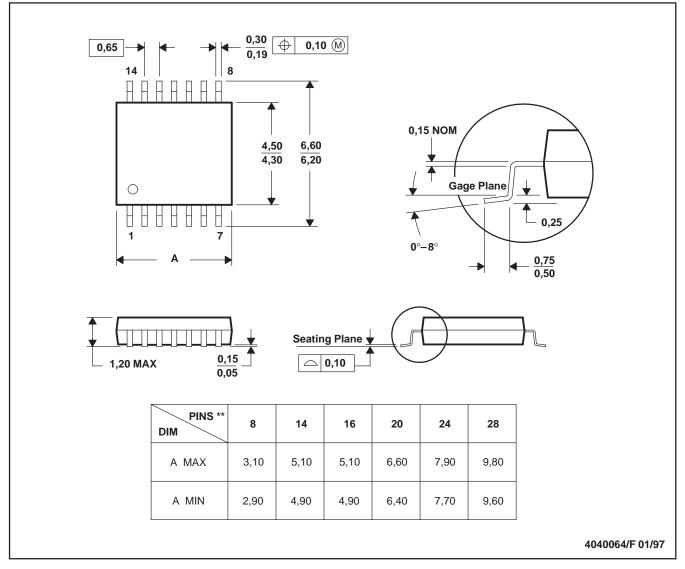
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150


MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated