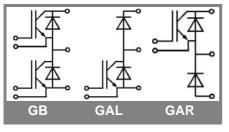


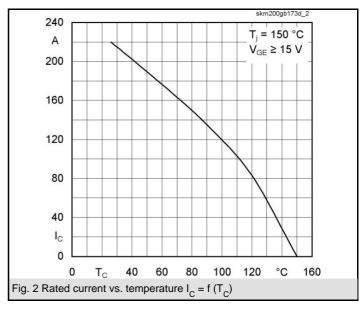
IGBT Modules

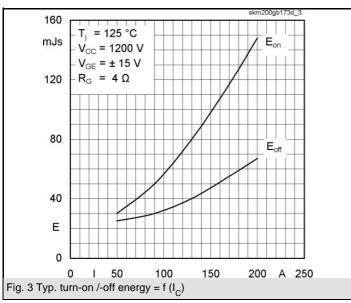

SKM 200GB173D SKM 200GB173D1 SKM 200GAL173D SKM 200GAR173D

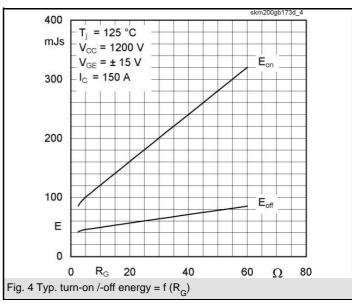
Features

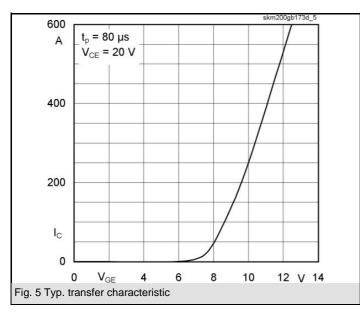
- MOS input (voltage controlled)
- N channel , Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)

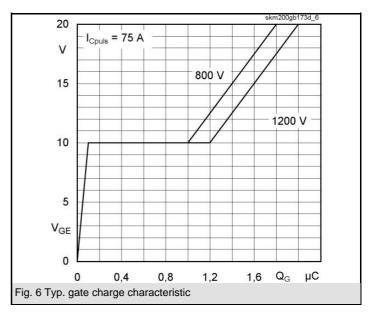

Typical Applications

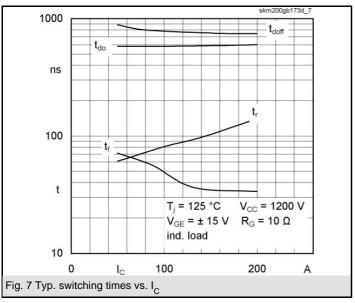

- AC inverter drives on mains 575 -750 V_{AC}
- DC bus voltage 750 1200 V_{DC}
- Public transport (auxiliary syst.)
- Switching (not for linear use)



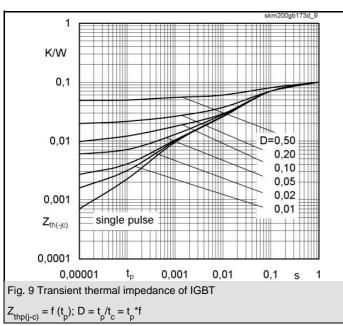

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specifications							
Symbol	Conditions	Values	Units				
IGBT		•					
V_{CES}		1700	V				
I _C	$T_c = 25 (80) ^{\circ}C$	220 (150)	Α				
I _{CRM}	$t_p = 1 \text{ ms}$	300	Α				
V_{GES}		± 20	V				
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C				
V_{isol}	AC, 1 min.	4000	V				
Inverse diode							
I _F	$T_c = 25 (80) ^{\circ}C$	150 (100)	Α				
I _{FRM}	$t_p = 1 \text{ ms}$	300	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	1450	Α				
Freewheeling diode							
I _F	T _c = 25 (80) °C	230 (150)	Α				
I _{FRM}	$t_p = 1 \text{ ms}$	400	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin; } T_j = 150 ^{\circ}\text{C}$	2200	Α				

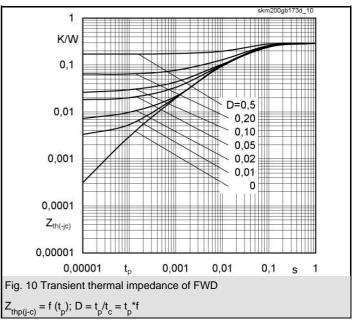

Characteristics		T _c = 25 °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 10 \text{ mA}$	4,8	5,5	6,2	V	
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 (125) °C$		0,1	0,3	mA	
$V_{CE(TO)}$	T _j = 25 (125) °C		1,65 (1,9)	1,9 (2,15)	V	
r_{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		11,7 (17,3)	13,3 (19)	mΩ	
$V_{\text{CE(sat)}}$	I_{Cnom} = 150 A, V_{GE} = 15 V, chip level		3,4 (4,5)	3,9 (5)	V	
C _{ies}	under following conditions		20		nF	
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25$ V, $f = 1$ MHz		2		nF	
C _{res}			0,55		nF	
L _{CE}				20	nH	
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ	
$t_{d(on)}$	V _{CC} = 1200 V, I _{Cnom} = 150 A		580		ns	
t _r	$R_{Gon} = R_{Goff} = 4 \Omega$, $T_j = 125 °C$		100		ns	
$t_{d(off)}$	V _{GE} = ± 15 V		750		ns	
t _f			40		ns	
$E_{on} (E_{off})$			95 (45)		mJ	
Inverse d	iode					
$V_F = V_{EC}$	$I_{\text{Fnom}} = 150 \text{ A}; V_{\text{GE}} = 0 \text{ V}; T_{j} = 25 \text{ (125)}$		2,2 (1,9)	2,7	V	
$V_{(TO)}$	T _i = 125 () °C		1,3	1,5	V	
r _T	T _j = 125 () °C		4,5	6,2	mΩ	
I_{RRM}	I_{Fnom} = 150 A; T_j = 25 (125) °C		60 (85)		Α	
Q_{rr}	di/dt = 1000 A/µs		15 (38)		μC	
E _{rr}	V _{GE} = 0 V				mJ	
FWD						
$V_F = V_{EC}$	$I_F = 150 \text{ A}; V_{GE} = 0 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		2 (1,8)	2,4	V	
$V_{(TO)}$	T _j = 125 () °C		1,3	1,5	V	
r _T	$T_j = 125 () ^{\circ}C$		3,5	4,5	mΩ	
I _{RRM}	$I_F = 150 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$		75 (110)		A	
Q_{rr}	di/dt = A/μs		20 (50)		μC	
E _{rr}	V _{GE} = V				mJ	
	characteristics					
$R_{th(j-c)}$	per IGBT			0,1	K/W	
$R_{th(j-c)D}$	per Inverse Diode			0,32	K/W	
$R_{th(j-c)FD}$	per FWD			0,21	K/W	
$R_{th(c-s)}$	per module			0,038	K/W	
Mechanical data						
M_s	to heatsink M6	3		5	Nm	
M_{t}	to terminals M6				Nm	
w				325	g	

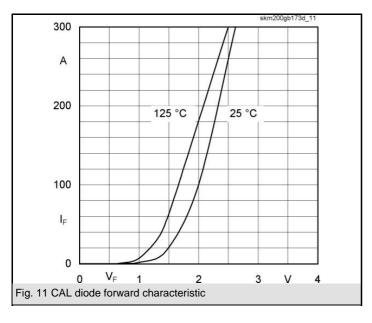


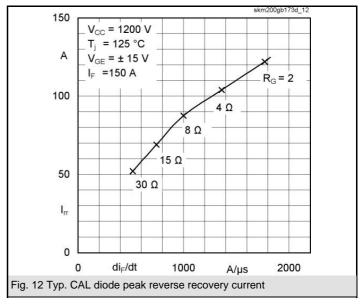


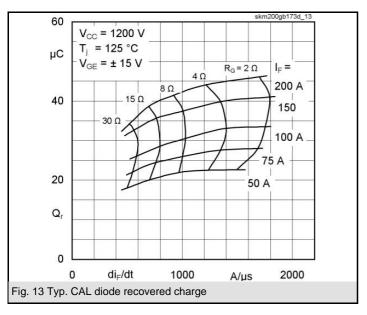


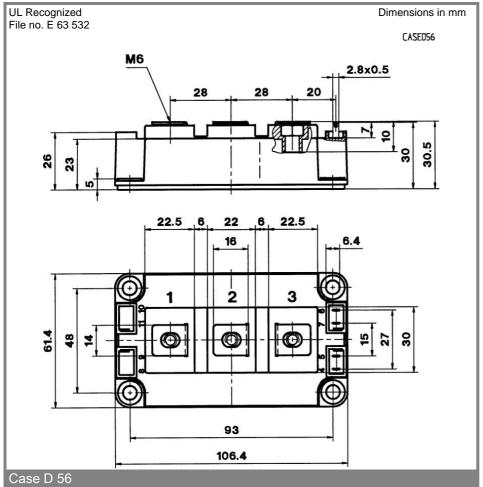


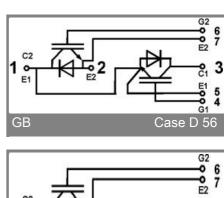


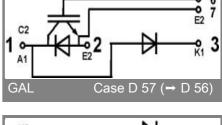


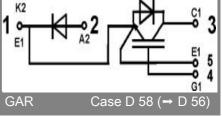












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.