March 2000 Revised June 2005

74VCX163245 Low Voltage 16-Bit Dual Supply Translating Transceiver with 3-STATE Outputs

General Description

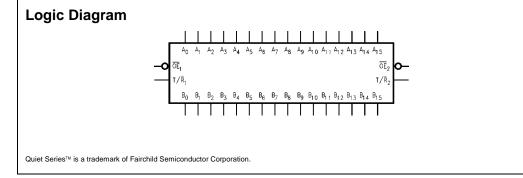
The VCX163245 is a dual supply, 16-bit translating transceiver that is designed for 2 way asynchronous communication between busses at different supply voltages by providing true signal translation. The supply rails consist of V_{CCA}, which is a higher potential rail operating at 2.3V to 3.6V and V_{CCB}, which is the lower potential rail operating at 1.65V to 2.7V. (V_{CCB} must be less than or equal to V_{CCA} for proper device operation). This dual supply design allows for translation from 1.8V to 2.5V busses to busses at a higher potential, up to 3.3V.

The Transmit/Receive (T/ \overline{R}) input determines the direction of data flow. Transmit (active-HIGH) enables data from A Ports to B Ports; Receive (active-LOW) enables data from B Ports to A Ports. The Output Enable (\overline{OE}) input, when HIGH, disables both A and B Ports by placing them in a High-Z condition. The A Port interfaces with the higher voltage bus (2.7V to 3.3V); The B Port interfaces with the lower voltage bus (1.8V to 2.5V). Also the VCX163245 is designed so that the control pins (T/ $\overline{R}_n, \overline{OE}_n$) are supplied by V_{CCB}.

The 74VCX163245 is suitable for mixed voltage applications such as notebook computers using a 1.8V CPU and 3.3V peripheral components. It is fabricated with an Advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

- Bidirectional interface between busses ranging from 1.65V to 3.6V
- Supports Live Insertion and Withdrawal (Note 1)
- Static Drive (I_{OH}/I_{OL})
 - ±24 mA @ 3.0V V_{CC}
 - ±18 mA @ 2.3V V_{CC}
 - ±6 mA @ 1.65V V_{CC}
- Uses patented Quiet Series[™] noise/EMI reduction circuitry
- Functionally compatible with 74 series 16245
- Latchup performance exceeds 300 mA
- ESD performance: Human Body Model >2000V
 - Machine model >200V
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA)


Note 1: To ensure the high impedance state during power up or power down, OE_n should be tied to V_{CCB} through a pull up resistor. The minimum value of the resistor is determined by the current sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74VCX163245G (Note 2)(Note 3)	BGA54A	54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
74VCX163245MTD (Note 3)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Note 2: Ordering code "G" indicates Trays.

Note 3: Device also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

74VCX163245 Low Voltage 16-Bit Dual Supply Translating Transceiver with 3-STATE Outputs

74VCX163245

Pin Assignment for TSSOP						
t/R ₁ —	1 48					
В ₀ —	2 47	- A ₀				
в ₁ —	3 46	- A1				
GND -	4 45	- GND				
B ₂ —	5 44	— A ₂				
B ₃ —	6 43					
V _{CCB} —	7 42	- V _{CCA}				
B ₄ —	8 41	- A4				
B ₅ —	9 40	— A ₅				
GND -	10 39	- GND				
в ₆ —	11 38	— A ₆				
B ₇ —	12 37	- A7				
B ₈ —	13 36	— A ₈				
в ₉ —	14 35	— A ₉				
gnd 🗕	15 34	- GND				
в ₁₀ —	16 33	— A ₁₀				
B ₁₁ —	17 32	— A ₁₁				
V _{CCB} —	18 31	— ν _{сса}				
B ₁₂ —	19 30	— A ₁₂				
B ₁₃ —	20 29	— A ₁₃				
gnd —	21 28	- GND				
B ₁₄ —	22 27	— A ₁₄				
B ₁₅ —	23 26	- A ₁₅				
t/R ₂ —	24 25	$-\overline{OE}_2$				
t/R ₂ —						
t∕R ₂ —		- OE2				
t∕R ₂ —	24 25	- OE2				
⊺∕R ₂ – Pin As	24 25 signment for F 1 2 3 4 5	BGA				
⊺/R ₂ – Pin As	24 25 signment for F 1 2 3 4 5	BGA				
$T/R_2 -$ Pin As	24 25 signment for F 1 2 3 4 5 0	BGA 6 0				
T/R ₂ – Pin As	24 25 signment for F 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BGA				
تر/R ₂ – Pin As س ن	24 25 signment for F 1 2 3 4 5 0	BGA 6 0				
די⊼פ – Pin As פ ט ט ש	24 25 signment for F 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0	BGA 6 0				
т/R ₂ — Pin As с с ц	24 25 signment for F 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BGA 6 0				
т/R ₂ — Pin As с с ц	24 25 signment for F 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0	BGA 6 0				
ז∖⊼₂ – Pin As פ ט ט ע נ נ	24 25 signment for F 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 000000000000000000000000000000000000				
ז∖⊼₂ – Pin As פ ט ט ע נ נ	24 25 signment for F 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0	6 000000000000000000000000000000000000				
ו/k₂ – Pin As פ ט ט ע ע ע ע ע ע ע ע ע ע ע ע ע ע ע ע ע	24 25 signment for F 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 000000000000000000000000000000000000				
T/R₂ - Pin As פ ט נ נ נ ד ד	24 25 signment for F 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 000000000000000000000000000000000000				
T/R₂ - Pin As פ ט נ נ נ ד ד	24 25 signment for F 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 000000000000000000000000000000000000				
T/R₂ - Pin As פ ט נ נ נ ד ד	24 25 signment for F 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 000000000000000000000000000000000000				
T/R₂ - Pin As פ ט נ נ נ ד ד	24 25 signment for F 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 000000000000000000000000000000000000				
T/R₂ - Pin As פ ט נ נ נ ד ד	24 25 signment for F 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 000000000000000000000000000000000000				
T/R₂ - Pin As פ ט נ נ נ ד ד	24 25 signment for F 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 000000000000000000000000000000000000				

Connection Diagrams

Pin Descriptions

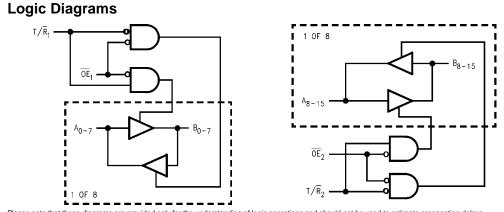
Pin Names	Description
OEn	Output Enable Input (Active LOW)
T/R _n	Transmit/Receive Input
A ₀ -A ₁₅	Side A Inputs or 3-STATE Outputs
A ₀ -A ₁₅ B ₀ -B ₁₅ NC	Side B Inputs or 3-STATE Outputs
NC	No Connect

FBGA Pin Assignments

	1	2	3	4	5	6
Α	B ₀	NC	T/R ₁	OE ₁	NC	A ₀
В	B ₂	B ₁	NC	NC	A ₁	A ₂
С	B ₄	B ₃	V _{CCB}	V _{CCA}	A ₃	A ₄
D	B ₆	B ₅	GND	GND	A ₅	A ₆
E	B ₈	В ₇	GND	GND	A ₇	A ₈
F	B ₁₀	B ₉	GND	GND	A ₉	A ₁₀
G	B ₁₂	B ₁₁	V _{CCB}	V _{CCA}	A ₁₁	A ₁₂
Н	B ₁₄	B ₁₃	NC	NC	A ₁₃	A ₁₄
J	B ₁₅	NC	T/R ₂	OE ₂	NC	A ₁₅

Truth Tables

Inp	outs	2 4 4 4			
OE ₁	T/R ₁	Outputs			
L	L	Bus B_0-B_7 Data to Bus A_0-A_7			
L	н	Bus $A_0 - A_7$ Data to Bus $B_0 - B_7$			
н	Х	HIGH Z State on A ₀ -A ₇ , B ₀ -B ₇			
		Outruite			
Inp	outs	0://10/16			
	outs T/R ₂	Outputs			
		Outputs Bus B ₈ -B ₁₅ Data to Bus A ₈ -A ₁₅			
		·			
	T/R ₂ L	Bus B_8 - B_{15} Data to Bus A_8 - A_{15}			


L = LOW Voltage Level X = Immaterial (HIGH or LOW, inputs may not float) Z = High Impedance

VCX163245 Translator Power Up Sequence Recommendations

To guard against power up problems, some simple guidelines need to be adhered to. The VCX163245 is designed so that the control pins $(T/\overline{R}_n, \overline{OE}_n)$ are supplied by V_{CCB}. Therefore the first recommendation is to begin by powering up the control side of the device, V_{CCB} . The \overrightarrow{OE}_n control pins should be ramped with or ahead of $V_{\mbox{\scriptsize CCB}},$ this will guard against bus contentions and oscillations as all A Port and B Port outputs will be disabled. To ensure the high impedance state during power up or power down, \overline{OE}_n should be tied to $V_{\mbox{\scriptsize CCB}}$ through a pull up resistor. The minimum value of the resistor is determined by the current sourcing capability of the driver. Second, the T/\overline{R}_n control

pins should be placed at logic LOW (0V) level, this will ensure that the B-side bus pins are configured as inputs to help quard against bus contention and oscillations. B-side Data Inputs should be driven to a valid logic level (0V or $V_{\mbox{\scriptsize CCB}}\mbox{)},$ this will prevent excessive current draw and oscillations. V_{CCA} can then be powered up after $V_{\text{CCB}},$ however V_{CCA} must be greater than or equal to V_{CCB} to ensure proper device operation. Upon completion of these steps the device can then be configured for the users desired operation. Following these steps will help to prevent possible damage to the translator device as well as other system components.

74VCX163245

Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 4)

Recommended Operating Conditions (Note 6)

Supply Voltage		Conditions (Note 6)	
V _{CCA}	-0.5V to +4.6V	Power Supply (Note 7)	
V _{CCB}	–0.5V to V _{CCA}	V _{CCA}	2.3V to 3.6V
DC Input Voltage (VI)	-0.5V to +4.6V	V _{CCB}	1.65V to 2.7V
DC Output Voltage (V _{I/O})		Input Voltage (V _I) @ OE, T/R	0V to V _{CCB}
Outputs 3-STATE	-0.5V to +4.6V	Input/Output Voltage (VI/O)	
Outputs Active (Note 5)		A _n	0V to V _{CCA}
A _n	–0.5V to V_{CCA} + 0.5V	B _n	0V to V _{CCB}
B _n	–0.5V to V_{CCB} + 0.5V	Output Current in I _{OH} /I _{OL}	
DC Input Diode Current (IIK)		$V_{CCA} = 3.0V$ to 3.6V	±24 mA
V ₁ < 0V	–50 mA	$V_{CCA} = 2.3V$ to 2.7V	±18 mA
DC Output Diode Current (I _{OK})		$V_{CCB} = 2.3V$ to 2.7V	±18 mA
$V_{O} < 0V$	–50 mA	V _{CCB} = 1.65V to 1.95V	±6 mA
$V_{O} > V_{CC}$	+50 mA	Free Air Operating Temperature (T _A	-40°C to +85°C
DC Output Source/Sink Current		Minimum Input Edge Rate ($\Delta t/\Delta V$)	
(I _{OH} /I _{OL})	±50 mA	$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V
$\begin{array}{l} \text{DC V}_{\text{CC}} \text{ or Ground Current} \\ \text{Supply Pin (I}_{\text{CC}} \text{ or Ground)} \\ \text{Storage Temperature (T}_{\text{STG}}) \end{array}$	±100 mA -65°C to +150°C	Note 4: The "Absolute Maximum Ratings" are that the safety of the device cannot be guaranteed. The operated at these limits. The parametric values of Characteristics tables are not guaranteed at the absolute The "Recommended Operating Conditions" table of	ne device should not be defined in the Electrical solute maximum ratings.
		for actual device operation.	

Note 5: I_O Absolute Maximum Rating must be observed.

Note 6: Unused inputs or I/O pins must be held HIGH or LOW. They may not float.

Note 7: Operation requires: $V_{CCB} \le V_{CCA}$

DC Electrical Characteristics (1.65V $< V_{CCB} \leq$ 1.95V, 2.3V $< V_{CCA} \leq$ 2.7V)

Symbol	Parameter		Conditions	V _{CCB} (V)	V _{CCA} (V)	Min	Max	Units	
V _{IHA}	HIGH Level Input Voltage	A _n		1.65-1.95	2.3–2.7	1.6		V	
V _{IHB}		$B_n, T/R, \overline{OE}$		1.65-1.95	2.3–2.7	0.65 x V _{CCB}		V	
V _{ILA}	LOW Level Input Voltage	A _n		1.65–1.95	2.3–2.7		0.7	V	
V _{ILB}		$B_{n},T/R,\overline{OE}$		1.65-1.95	2.3–2.7		$0.35 \times V_{CCB}$	V	
V _{OHA}	HIGH Level Output Voltage	Э	I _{OH} = -100 μA	1.65–1.95	2.3–2.7	V _{CCA} -0.2		V	
			$I_{OH} = -18 \text{ mA}$	1.65	2.3–2.7	1.7		v	
V _{ОНВ}	HIGH Level Output Voltage	Э	I _{OH} = -100 μA	1.65–1.95	2.3–2.7	V _{CCB} -0.2		V	
			$I_{OH} = -6 \text{ mA}$	1.65-1.95	2.3	1.25		v	
V _{OLA}	Low Level Output Voltage		I _{OL} = 100 μA	1.65-1.95	2.3–2.7		0.2	V	
			I _{OL} = 18 mA	1.65	2.3–2.7		0.6	•	
V _{OLB}	Low Level Output Voltage		I _{OL} = 100 μA	1.65–1.95	2.3–2.7		0.2	V	
			$I_{OL} = 6 \text{ mA}$	1.65–1.95	2.3		0.3	v	
l _l	Input Leakage Current @	DE, T/R	$0V \leq V_I \leq 3.6V$	1.65–1.95	2.3–2.7		±5.0	μA	
loz	3-STATE Output Leakage			1.65–1.95	2.3–2.7		±10	μA	
OFF	Power Off Leakage Curren	ıt	$0 \leq \left(V_I, \; V_O\right) \leq 3.6 V$	0	0		10	μA	
I _{CCA} /I _{CCB}	Quiescent Supply Current, per supply, V _{CCA} / V _{CCB}		$A_n = V_{CCA}$ or GND B_n , \overline{OE} , & $T/\overline{R} = V_{CCB}$ or GND	1.65–1.95	2.3–2.7		20	μA	
			$\label{eq:V_CCA} \begin{split} &V_{CCA} \leq An \leq 3.6V \\ &V_{CCB} \leq B_n, \ \overline{OE}, \ T/\overline{R} \leq 3.6V \end{split}$	1.65–1.95	2.3–2.7		±20	μA	
ΔI _{CC}	Increase in I _{CC} per Input, E	B _n , T/ R , OE	$V_I = V_{CCB} - 0.6V$	1.65-1.95	2.3–2.7		750	μA	
	Increase in I _{CC} per Input, A	۹ _n	$V_I = V_{CCA} - 0.6V$	1.65-1.95	2.3-2.7		750	μA	

www.fairchildsemi.com

Symbol	Parameter		Conditions	V _{ССВ} (V)	V _{CCA} (V)	Min	Max	Units	
V _{IHA}	HIGH Level Input Voltage	A _n		1.65-1.95	3.0–3.6	2.0		V	
V _{IHB}		B _n , T/R, OE		1.65-1.95	3.0-3.6	0.65 x V _{CCB}		V	
V _{ILA}	LOW Level Input Voltage	A _n		1.65-1.95	3.0-3.6		0.8	V	
V _{ILB}		B _n , T/R, OE		1.65-1.95	3.0-3.6		0.35 x V _{CCB}	V	
V _{OHA}	HIGH Level Output Voltag	e	I _{OH} = -100 μA	1.65-1.95	3.0-3.6	V _{CCA} -0.2			
			$I_{OH} = -24 \text{ mA}$	1.65	3.0-3.6	2.2		V	
V _{OHB}	HIGH Level Output Voltag	е	I _{OH} = -100 μA	1.65-1.95	3.0-3.6	V _{CCA} -0.2		V	
			I _{OH} = -6 mA	1.65-1.95	3.0	1.25	v		
V _{OLA}	LOW Level Output Voltage	9	I _{OL} = 100 μA	1.65-1.95	3.0-3.6		0.2).2 V	
			I _{OL} = 24 mA	1.65	3.0–3.6		0.55	v	
V _{OLB}	LOW Level Output Voltage	9	I _{OL} = 100 μA	1.65-1.95	3.0–3.6		0.2	V	
			$I_{OL} = 6 \text{ mA}$	1.65-1.95	3.0		0.3	v	
l _l	Input Leakage Current @	OE, T/R	$0V \leq V_I \leq 3.6V$	1.65-1.95	3.0-3.6		±5.0	μA	
I _{OZ}	3-STATE Output Leakage		$\label{eq:overlap} \begin{split} &0V \leq V_O \leq 3.6V \\ &OE^* = V_CCB \\ &V_I = V_IH \text{ or } V_IL \end{split}$	1.65–1.95	3.0–3.6		±10	μA	
I _{OFF}	Power OFF Leakage Curr	ent	$0 \leq \left(V_I, \; V_O\right) \leq 3.6 V$	0	0		10	μA	
I _{CCA} /I _{CCB}	Quiescent Supply Current per supply, V _{CCA} /V _{CCB}	,	$A_n = V_{CCA}$ or GND B_n , \overline{OE} , & T/ $\overline{R} = V_{CCB}$ or GND	1.65–1.95	3.0–3.6		20	μA	
			$\label{eq:V_CCA} \begin{split} &V_{CCA} \leq A_n \leq 3.6V \\ &V_{CCB} \leq B_n, \ \overline{OE}, \ T/\overline{R} \leq 3.6V \end{split}$	1.65–1.95	3.0–3.6		±20	μA	
ΔI _{CC}	Increase in I _{CC} per Input, I	B _n , T/R, OE	$V_I = V_{CCB} - 0.6V$	1.65–1.95	3.0-3.6		750	μA	
	Increase in I _{CC} per Input,		$V_I = V_{CCA} - 0.6V$	1.65-1.95	3.0-3.6		750	μA	

DC Electrical Characteristics (2.3V < V_{CCB} \leq 2.7V, 3.0V \leq V_{CCA} \leq 3.6V)

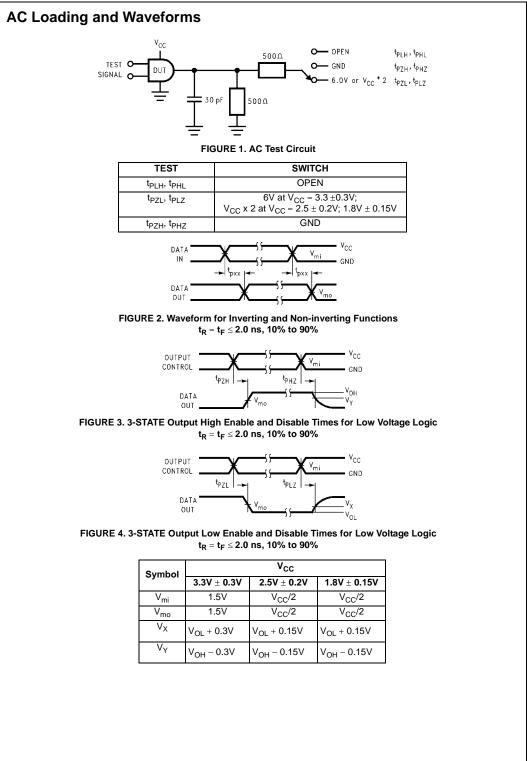
Symbol	Parameter		Conditions	V _{ССВ} (V)	V _{CCA} (V)	Min	Max	Units	
V _{IHA}	HIGH Level Input Voltage	A _n		2.3–2.7	3.0–3.6	2.0		V	
V _{IHB}		B _n , T/R, OE		2.3–2.7	3.0–3.6	1.6		V	
V _{ILA}	LOW Level Input Voltage	A _n		2.3–2.7	3.0–3.6		0.8	V	
V _{ILB}		B _n , T/R, OE		2.3–2.7	3.0-3.6		0.7	V	
V _{OHA}	HIGH Level Output Voltag	e	I _{OH} = -100 μA	2.3–2.7	3.0-3.6	V _{CCA} -0.2		v	
			$I_{OH} = -24 \text{ mA}$	2.3	3.0–3.6	2.2		v	
V _{OHB}	HIGH Level Output Voltag	е	I _{OH} = -100 μA	2.3–2.7	3.0-3.6	V _{CCB} -0.2		V	
			$I_{OH} = -18 \text{ mA}$	2.3–2.7	3.0	1.7			
V _{OLA}	LOW Level Output Voltage	el Output Voltage I _{OL} = 100 μA 2.3–2.7 3.0–3.6			0.2	V			
			$I_{OL} = 24 \text{ mA}$	2.3	3.0-3.6		0.55	v	
V _{OLB}	LOW Level Output Voltage	9	I _{OL} = 100 μA	2.3–2.7	3.0-3.6		0.2	v	
			I _{OL} = 18 mA	2.3–2.7	3.0		0.6	v	
I _I	Input Leakage Current @	OE, T/R	$0V \leq V_{I} \leq 3.6V$	2.3–2.7	3.0–3.6		±5.0	μA	
I _{OZ}	3-STATE Output Leakage	@ A _n	$\frac{0V \le V_O \le 3.6V}{OE} = V_{CCA}$ $V_I = V_{IH} \text{ or } V_{IL}$	2.3–2.7	3.0–3.6		±10	μΑ	
I _{OFF}	Power OFF Leakage Curr	ent	$0 \leq (V_I, V_O) \leq 3.6V$	0	0		10	μA	
I _{CCA} /I _{CCB}	Quiescent Supply Current per supply, V _{CCA} /V _{CCB}	,	$A_n = V_{CCA} \text{ or GND} B_n, \overline{OE}, \& T/\overline{R} = V_{CCB} \text{ or GND} $	2.3–2.7	3.0–3.6		20	μA	
			$\label{eq:V_CCA} \begin{split} V_{CCA} &\leq A_n \leq 3.6V \\ V_{CCB} &\leq B_n, \ \overline{OE}, \ T/\overline{R} \leq 3.6V \end{split}$	2.3–2.7	3.0–3.6		±20	μΑ	
ΔI _{CC}	Increase in I _{CC} per Input, I	B _n , T/R, OE	$V_I = V_{CCB} - 0.6V$	2.3–2.7	3.0–3.6		750	μA	
	Increase in I _{CC} per Input,	۹ _n	$V_I = V_{CCA} - 0.6V$	2.3-2.7	3.0-3.6		750	μA	

74VCX163245

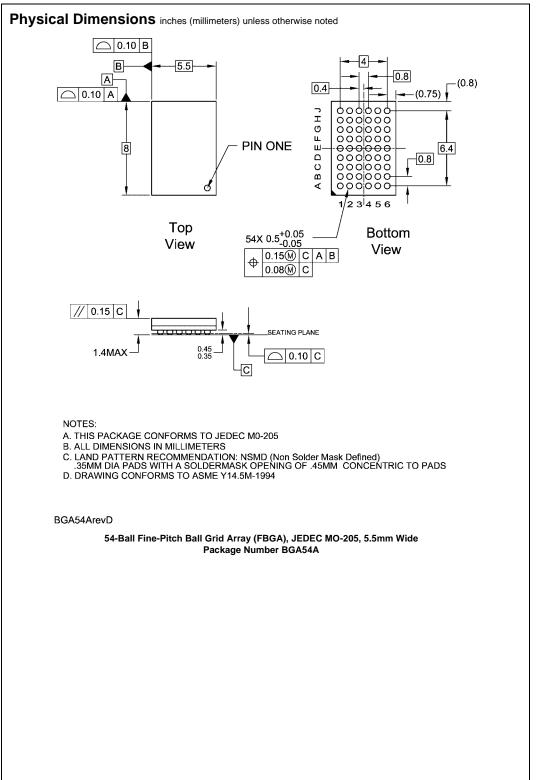
www.fairchildsemi.com

AC Electrical Characteristics

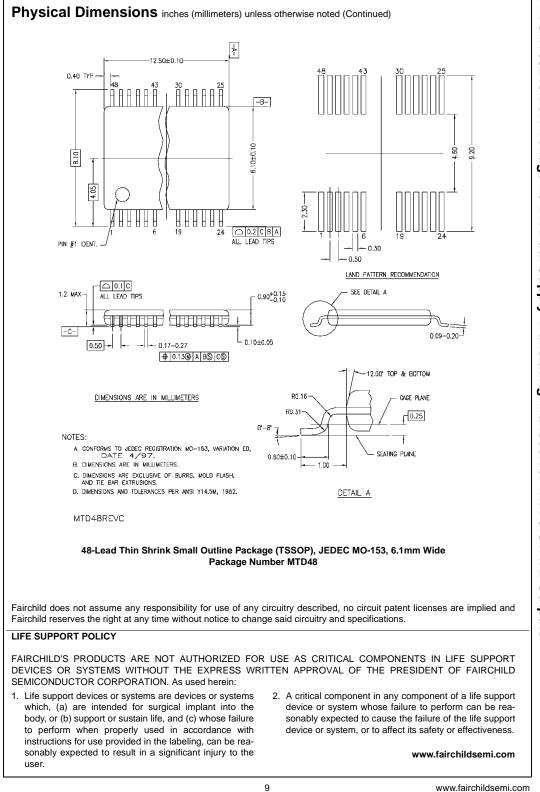
$\textbf{T}_{\textbf{A}}=-\textbf{40}^{\circ}\textbf{C}$ to $+\textbf{85}^{\circ}\textbf{C},\,\textbf{C}_{\textbf{L}}=\textbf{30}~\textbf{pF},\,\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$ V_{CCB} = 1.65V to 1.95V V_{CCB} = 1.65V to 1.95V V_{CCB} = 2.3V to 2.7V Symbol Units Parameter $V_{CCA}=\textbf{2.3V to 2.7V}$ $V_{CCA} = 3.0V$ to 3.6VV_{CCA} = 3.0V to 3.6V Min Max Min Max Min Max 0.8 Propagation Delay, A to B 1.5 5.8 1.5 6.2 4.4 ns t_{PHL}, t_{PLH} Propagation Delay, B to A 0.8 0.6 5.5 5.1 0.6 4.0 ns t_{PHL}, t_{PLH} Output Enable Time, OE to B 1.5 8.3 1.5 8.2 0.8 4.6 ns $t_{\text{PZL}},\,t_{\text{PZH}}$ Output Enable Time, OE to A 0.8 5.3 0.6 5.1 0.6 4.0 ns t_{PZL}, t_{PZH} 0.8 4.5 t_{PLZ}, t_{PHZ} Output Disable Time, OE to B 0.8 4.6 0.8 4.4 ns Output Disable Time, OE to A 0.8 0.6 5.6 0.6 4.8 5.2 ns t_{PLZ}, t_{PHZ} Output to Output Skew t_{osHL} 5.0 0.5 0.75 ns (Note 8) t_{osLH}


Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{osHL}) or LOW-to-HIGH (t_{osLH}).

Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{CCB}	V _{CCA}	T _A = +25°C	Units
			(V)	(V)	Typical	
V _{OLP}	Quiet Output Dynamic	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0 \text{V}$	1.8	2.5	0.25	
	Peak V _{OL} , A to B		1.8	3.3	0.25	V
			2.5	3.3	0.6	
VOLP	Quiet Output Dynamic	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	2.5	0.6	
	Peak V _{OL} , B to A		1.8	3.3	0.8	V
			2.5	3.3	0.8	
V _{OLV}	Quiet Output Dynamic	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	2.5	-0.25	
	Valley V _{OL} , A to B		1.8	3.3	-0.25	V
			2.5	3.3	-0.6	
V _{OLV}	Quiet Output Dynamic	$C_L = 30 \text{ pF}, \text{ V}_{IH} = \text{V}_{CC}, \text{ V}_{IL} = 0 \text{V}$	1.8	2.5	-0.6	
	Valley V _{OL} , B to A		1.8	3.3	-0.8	V
			2.5	3.3	-0.8	
V _{OHV}	Quiet Output Dynamic	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	2.5	1.3	
	Valley V _{OH} , A to B		1.8	3.3	1.3	V
			2.5	3.3	1.7	
V _{OHV}	Quiet Output Dynamic	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	2.5	1.7	
	Valley V _{OH} , B to A		1.8	3.3	2.0	V
			2.5	3.3	2.0	

Capacitance


Symbol	Parameter	Conditions	$T_A = +25^{\circ}C$	Units
CIN	Input Capacitance	V_{CCB} = 2.5V, V_{CCA} = 3.3V, V_{I} = 0V or $V_{CCA/B}$	5	pF
C _{I/O}	Input/Output Capacitance	V_{CCB} = 2.5V, V_{CCA} = 3.3V, V_{I} = 0V or $V_{CCA/B}$	6	pF
C _{PD}	Power Dissipation Capacitance	V_{CCB} = 2.5V, V_{CCA} = 3.3V, V_{I} = 0V or $V_{CCA/B}$	20	pF
		f = 10MHz		

74VCX163245

74VCX163245

www.fairchildsemi.com