Features: Control Inputs VIH/VILLevels are Referenced to VCCAVoltage VCC Isolation Feature − If Either VCC Input Is at GND, Both Ports Are in the High-Impedance StateOvervoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data CommunicationsFully Configurable Dual-Rail Design Allows Eac...
SN74LVC16T245: Features: Control Inputs VIH/VILLevels are Referenced to VCCAVoltage VCC Isolation Feature − If Either VCC Input Is at GND, Both Ports Are in the High-Impedance StateOvervoltage-Tolerant Input...
SeekIC Buyer Protection PLUS - newly updated for 2013!
268 Transactions
All payment methods are secure and covered by SeekIC Buyer Protection PLUS.

This SN74LVC16T245 16-bit noninverting bus transceiver uses two separate configurable power-supply rails. The SN74AVC16T245 is optimized to operate with VCCA/VCCB set at 1.4 V to 3.6 V. It is operational with VCCA/VCCB as low as 1.2 V. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.
The SN74LVC16T245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE )input can be used to disable the outputs so the buses are effectively isolated.
The SN74LVC16T245 is designed so that the control pins (1DIR, 2DIR, 1OE , and 2OE ) are supplied by VCCA.
This device SN74LVC16T245 is fully specified for partial-power-down applications using I off. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.
The SN74LVC16T245 VCC isolation feature ensures that if either VCC input is at GND, both ports are in the high-impedance state.To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.